Loading…

Effect of Bushen Huoxue Prescription on Cognitive Dysfunction of KK-Ay Type 2 Diabetic Mice

Diabetic cognitive impairment is one of the common complications of type 2 diabetes, which can cause neurological and microvascular damage in the brain. Bushen Huoxue prescription (BSHX), a compound Chinese medicine, has been used clinically to treat diabetes-induced cognitive impairment. However, i...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2021, Vol.2021, p.6656362-14
Main Authors: Zhao, Shao-Yang, Zhao, Huan-Huan, Hao, Ting-Ting, Li, Wei-Wei, Guo, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetic cognitive impairment is one of the common complications of type 2 diabetes, which can cause neurological and microvascular damage in the brain. Bushen Huoxue prescription (BSHX), a compound Chinese medicine, has been used clinically to treat diabetes-induced cognitive impairment. However, its underlying mechanisms remain unclear. In this study, KK-Ay diabetic model mouse was administered BSHX daily for 12 weeks. Bodyweight, random blood glucose (RBG), and fasting blood glucose (FBG) were measured every 4 weeks. Triglycerides (TG), cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fasting serum insulin (FINS), and Morris water maze were tested after 12 weeks of administration. On the day of sacrifice, the hippocampus was collected for pathological staining and advanced glycation end products (AGEs) analysis to evaluate the neuroprotective effect of BSHX. Our results showed that BSHX treatment significantly ameliorated the T2DM related insults, including the increased bodyweight, blood glucose, TG, insulin levels, AGEs, the reduced HDL-C, the impaired spatial memory, and the neurological impairment. Moreover, Western blot analysis showed that increased expression of receptors of AGEs (RAGEs), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and activation of nuclear factor-κB (NF-κB) in the hippocampus were significantly inhibited by BSHX treatment. These results indicate that BSHX can significantly ameliorate glucose and lipid metabolism dysfunction, reduce the morphological changes in hippocampus tissues, and improve the cognitive function of KK-Ay mice. These protective effects of BSHX may involve regulation of the AGEs/RAGE/NF-κB signaling pathway.
ISSN:1741-427X
1741-4288
DOI:10.1155/2021/6656362