Loading…

Rapid, B1‐insensitive, dual‐band quasi‐adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux

Purpose Phosphorus saturation‐transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ‐ATP. The quantification of total ATP utilization i...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2021-06, Vol.85 (6), p.2978-2991
Main Authors: Miller, Jack J., Valkovič, Ladislav, Kerr, Matthew, Timm, Kerstin N., Watson, William D., Lau, Justin Y. C., Tyler, Andrew, Rodgers, Christopher, Bottomley, Paul A., Heather, Lisa C., Tyler, Damian J.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2991
container_issue 6
container_start_page 2978
container_title Magnetic resonance in medicine
container_volume 85
creator Miller, Jack J.
Valkovič, Ladislav
Kerr, Matthew
Timm, Kerstin N.
Watson, William D.
Lau, Justin Y. C.
Tyler, Andrew
Rodgers, Christopher
Bottomley, Paul A.
Heather, Lisa C.
Tyler, Damian J.
description Purpose Phosphorus saturation‐transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ‐ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate (Pi) and PCr. This is challenging, as currently available saturation pulses reduce the already‐low γ‐ATP signal present. Methods Using a hybrid optimal‐control and Shinnar‐Le Roux method, a quasi‐adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard‐cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. Results The quasi‐adiabatic pulse was insensitive to a >2.5‐fold variation in B1, producing equivalent saturation with a 53% reduction in delivered pulse power and a 33‐fold reduction in spillover at the minimum effective B1. This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30‐45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi‐to‐ATP measurement that may explain a trend suggesting a possible imbalance. Conclusions This work demonstrates a novel quasi‐adiabatic dual‐saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.
doi_str_mv 10.1002/mrm.28647
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486467945</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3117-b5459541a277b3af20716b47d3da2b45ed33e27b11b463b52c6f7f077ee05193</originalsourceid><addsrcrecordid>eNpdkc9uFSEYxYnR2Gt14RuQuHHRafk7XDYmbeO_pI2muXsCM2BpGJgC03p3PoLpI_ZJpL2Nia448J3vl0MOAG8xOsQIkaMpT4dk3TPxDKwwJ6QjXLLnYIUEQx3Fku2BV6VcIYSkFOwl2KOU0zXq6QrcXejZjwfwBN__-u1jsbH46m_sARwXHdqb0XGE14suvl306LXR1Q-w6LrkplKENetYnM3w1tdLmObqJx3gkGLNKUCXctPTHGy1D5xYvfPDbjM5OG3ToHPDBni8-Q5dWH6-Bi-cDsW-eTr3webTx83pl-7s2-evp8dn3UwxFp3hjEvOsCZCGKodQQL3homRjpoYxu1IqSXCYGxYTw0nQ--EQ0JYiziWdB982GHnxUx2HGzLq4Oac4uftyppr_6dRH-pfqQbJeS6b5gGeP8EyOl6saWqyZfBhqCjTUtRhLVKeiEZb9Z3_1mv0pJj-11zSYJFTxBtrqOd69YHu_2bBCP10LJqLavHltX5xfmjoH8AmumgwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492176203</pqid></control><display><type>article</type><title>Rapid, B1‐insensitive, dual‐band quasi‐adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Miller, Jack J. ; Valkovič, Ladislav ; Kerr, Matthew ; Timm, Kerstin N. ; Watson, William D. ; Lau, Justin Y. C. ; Tyler, Andrew ; Rodgers, Christopher ; Bottomley, Paul A. ; Heather, Lisa C. ; Tyler, Damian J.</creator><creatorcontrib>Miller, Jack J. ; Valkovič, Ladislav ; Kerr, Matthew ; Timm, Kerstin N. ; Watson, William D. ; Lau, Justin Y. C. ; Tyler, Andrew ; Rodgers, Christopher ; Bottomley, Paul A. ; Heather, Lisa C. ; Tyler, Damian J.</creatorcontrib><description>Purpose Phosphorus saturation‐transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ‐ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate (Pi) and PCr. This is challenging, as currently available saturation pulses reduce the already‐low γ‐ATP signal present. Methods Using a hybrid optimal‐control and Shinnar‐Le Roux method, a quasi‐adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard‐cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. Results The quasi‐adiabatic pulse was insensitive to a &gt;2.5‐fold variation in B1, producing equivalent saturation with a 53% reduction in delivered pulse power and a 33‐fold reduction in spillover at the minimum effective B1. This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30‐45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi‐to‐ATP measurement that may explain a trend suggesting a possible imbalance. Conclusions This work demonstrates a novel quasi‐adiabatic dual‐saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28647</identifier><identifier>PMID: 33538063</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>31P‐MRS ; Adiabatic ; Adiabatic flow ; ATP ; cardiac metabolism ; CK‐flux reaction ; CMR ; Creatine ; Creatine kinase ; Degradation ; Error analysis ; Fluctuations ; Fluxes ; Full Papers—Spectroscopic Methodology ; Heart ; Kinases ; metabolism ; Optimal control ; PCr ; Phosphocreatine ; Phosphorus ; pulse design ; Reduction ; RF design ; Saturation ; saturation transfer ; Synthesis ; Uncertainty analysis</subject><ispartof>Magnetic resonance in medicine, 2021-06, Vol.85 (6), p.2978-2991</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7013-2648 ; 0000-0001-7316-811X ; 0000-0002-6258-1299 ; 0000-0003-2567-3642 ; 0000-0003-1275-1197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Miller, Jack J.</creatorcontrib><creatorcontrib>Valkovič, Ladislav</creatorcontrib><creatorcontrib>Kerr, Matthew</creatorcontrib><creatorcontrib>Timm, Kerstin N.</creatorcontrib><creatorcontrib>Watson, William D.</creatorcontrib><creatorcontrib>Lau, Justin Y. C.</creatorcontrib><creatorcontrib>Tyler, Andrew</creatorcontrib><creatorcontrib>Rodgers, Christopher</creatorcontrib><creatorcontrib>Bottomley, Paul A.</creatorcontrib><creatorcontrib>Heather, Lisa C.</creatorcontrib><creatorcontrib>Tyler, Damian J.</creatorcontrib><title>Rapid, B1‐insensitive, dual‐band quasi‐adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux</title><title>Magnetic resonance in medicine</title><description>Purpose Phosphorus saturation‐transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ‐ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate (Pi) and PCr. This is challenging, as currently available saturation pulses reduce the already‐low γ‐ATP signal present. Methods Using a hybrid optimal‐control and Shinnar‐Le Roux method, a quasi‐adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard‐cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. Results The quasi‐adiabatic pulse was insensitive to a &gt;2.5‐fold variation in B1, producing equivalent saturation with a 53% reduction in delivered pulse power and a 33‐fold reduction in spillover at the minimum effective B1. This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30‐45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi‐to‐ATP measurement that may explain a trend suggesting a possible imbalance. Conclusions This work demonstrates a novel quasi‐adiabatic dual‐saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.</description><subject>31P‐MRS</subject><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>ATP</subject><subject>cardiac metabolism</subject><subject>CK‐flux reaction</subject><subject>CMR</subject><subject>Creatine</subject><subject>Creatine kinase</subject><subject>Degradation</subject><subject>Error analysis</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Full Papers—Spectroscopic Methodology</subject><subject>Heart</subject><subject>Kinases</subject><subject>metabolism</subject><subject>Optimal control</subject><subject>PCr</subject><subject>Phosphocreatine</subject><subject>Phosphorus</subject><subject>pulse design</subject><subject>Reduction</subject><subject>RF design</subject><subject>Saturation</subject><subject>saturation transfer</subject><subject>Synthesis</subject><subject>Uncertainty analysis</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkc9uFSEYxYnR2Gt14RuQuHHRafk7XDYmbeO_pI2muXsCM2BpGJgC03p3PoLpI_ZJpL2Nia448J3vl0MOAG8xOsQIkaMpT4dk3TPxDKwwJ6QjXLLnYIUEQx3Fku2BV6VcIYSkFOwl2KOU0zXq6QrcXejZjwfwBN__-u1jsbH46m_sARwXHdqb0XGE14suvl306LXR1Q-w6LrkplKENetYnM3w1tdLmObqJx3gkGLNKUCXctPTHGy1D5xYvfPDbjM5OG3ToHPDBni8-Q5dWH6-Bi-cDsW-eTr3webTx83pl-7s2-evp8dn3UwxFp3hjEvOsCZCGKodQQL3homRjpoYxu1IqSXCYGxYTw0nQ--EQ0JYiziWdB982GHnxUx2HGzLq4Oac4uftyppr_6dRH-pfqQbJeS6b5gGeP8EyOl6saWqyZfBhqCjTUtRhLVKeiEZb9Z3_1mv0pJj-11zSYJFTxBtrqOd69YHu_2bBCP10LJqLavHltX5xfmjoH8AmumgwQ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Miller, Jack J.</creator><creator>Valkovič, Ladislav</creator><creator>Kerr, Matthew</creator><creator>Timm, Kerstin N.</creator><creator>Watson, William D.</creator><creator>Lau, Justin Y. C.</creator><creator>Tyler, Andrew</creator><creator>Rodgers, Christopher</creator><creator>Bottomley, Paul A.</creator><creator>Heather, Lisa C.</creator><creator>Tyler, Damian J.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7013-2648</orcidid><orcidid>https://orcid.org/0000-0001-7316-811X</orcidid><orcidid>https://orcid.org/0000-0002-6258-1299</orcidid><orcidid>https://orcid.org/0000-0003-2567-3642</orcidid><orcidid>https://orcid.org/0000-0003-1275-1197</orcidid></search><sort><creationdate>202106</creationdate><title>Rapid, B1‐insensitive, dual‐band quasi‐adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux</title><author>Miller, Jack J. ; Valkovič, Ladislav ; Kerr, Matthew ; Timm, Kerstin N. ; Watson, William D. ; Lau, Justin Y. C. ; Tyler, Andrew ; Rodgers, Christopher ; Bottomley, Paul A. ; Heather, Lisa C. ; Tyler, Damian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3117-b5459541a277b3af20716b47d3da2b45ed33e27b11b463b52c6f7f077ee05193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>31P‐MRS</topic><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>ATP</topic><topic>cardiac metabolism</topic><topic>CK‐flux reaction</topic><topic>CMR</topic><topic>Creatine</topic><topic>Creatine kinase</topic><topic>Degradation</topic><topic>Error analysis</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Full Papers—Spectroscopic Methodology</topic><topic>Heart</topic><topic>Kinases</topic><topic>metabolism</topic><topic>Optimal control</topic><topic>PCr</topic><topic>Phosphocreatine</topic><topic>Phosphorus</topic><topic>pulse design</topic><topic>Reduction</topic><topic>RF design</topic><topic>Saturation</topic><topic>saturation transfer</topic><topic>Synthesis</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jack J.</creatorcontrib><creatorcontrib>Valkovič, Ladislav</creatorcontrib><creatorcontrib>Kerr, Matthew</creatorcontrib><creatorcontrib>Timm, Kerstin N.</creatorcontrib><creatorcontrib>Watson, William D.</creatorcontrib><creatorcontrib>Lau, Justin Y. C.</creatorcontrib><creatorcontrib>Tyler, Andrew</creatorcontrib><creatorcontrib>Rodgers, Christopher</creatorcontrib><creatorcontrib>Bottomley, Paul A.</creatorcontrib><creatorcontrib>Heather, Lisa C.</creatorcontrib><creatorcontrib>Tyler, Damian J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jack J.</au><au>Valkovič, Ladislav</au><au>Kerr, Matthew</au><au>Timm, Kerstin N.</au><au>Watson, William D.</au><au>Lau, Justin Y. C.</au><au>Tyler, Andrew</au><au>Rodgers, Christopher</au><au>Bottomley, Paul A.</au><au>Heather, Lisa C.</au><au>Tyler, Damian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid, B1‐insensitive, dual‐band quasi‐adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2021-06</date><risdate>2021</risdate><volume>85</volume><issue>6</issue><spage>2978</spage><epage>2991</epage><pages>2978-2991</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Phosphorus saturation‐transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ‐ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate (Pi) and PCr. This is challenging, as currently available saturation pulses reduce the already‐low γ‐ATP signal present. Methods Using a hybrid optimal‐control and Shinnar‐Le Roux method, a quasi‐adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard‐cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. Results The quasi‐adiabatic pulse was insensitive to a &gt;2.5‐fold variation in B1, producing equivalent saturation with a 53% reduction in delivered pulse power and a 33‐fold reduction in spillover at the minimum effective B1. This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30‐45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi‐to‐ATP measurement that may explain a trend suggesting a possible imbalance. Conclusions This work demonstrates a novel quasi‐adiabatic dual‐saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33538063</pmid><doi>10.1002/mrm.28647</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7013-2648</orcidid><orcidid>https://orcid.org/0000-0001-7316-811X</orcidid><orcidid>https://orcid.org/0000-0002-6258-1299</orcidid><orcidid>https://orcid.org/0000-0003-2567-3642</orcidid><orcidid>https://orcid.org/0000-0003-1275-1197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2021-06, Vol.85 (6), p.2978-2991
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986077
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects 31P‐MRS
Adiabatic
Adiabatic flow
ATP
cardiac metabolism
CK‐flux reaction
CMR
Creatine
Creatine kinase
Degradation
Error analysis
Fluctuations
Fluxes
Full Papers—Spectroscopic Methodology
Heart
Kinases
metabolism
Optimal control
PCr
Phosphocreatine
Phosphorus
pulse design
Reduction
RF design
Saturation
saturation transfer
Synthesis
Uncertainty analysis
title Rapid, B1‐insensitive, dual‐band quasi‐adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid,%20B1%E2%80%90insensitive,%20dual%E2%80%90band%20quasi%E2%80%90adiabatic%20saturation%20transfer%20with%20optimal%20control%20for%20complete%20quantification%20of%20myocardial%20ATP%20flux&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Miller,%20Jack%20J.&rft.date=2021-06&rft.volume=85&rft.issue=6&rft.spage=2978&rft.epage=2991&rft.pages=2978-2991&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28647&rft_dat=%3Cproquest_pubme%3E2486467945%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3117-b5459541a277b3af20716b47d3da2b45ed33e27b11b463b52c6f7f077ee05193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492176203&rft_id=info:pmid/33538063&rfr_iscdi=true