Loading…

hypeR: an R package for geneset enrichment workflows

Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. W...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2020-02, Vol.36 (4), p.1307-1308
Main Authors: Federico, Anthony, Monti, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3
cites cdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3
container_end_page 1308
container_issue 4
container_start_page 1307
container_title Bioinformatics
container_volume 36
creator Federico, Anthony
Monti, Stefano
description Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases. Availability and implementation The most recent version of the package is available at https://github.com/montilab/hypeR.
doi_str_mv 10.1093/bioinformatics/btz700
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz700</oup_id><sourcerecordid>2287515111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3-BCVHL7E7-5HsehCk-AWCUHpfNttNG5tk425qqb_eSGqxN08zzLzzzMuL0CXgG8CSjrPCFXXufKXbwoRx1n6lGB-hIbAExwRzedz1NEljJjAdoLMQ3jHmwBg7RQMKTAoq-BCx5bax09tI19E0arRZ6YWNOmy0sLUNto1s7QuzrGzdRhvnV3npNuEcneS6DPZiV0do9vgwmzzHr29PL5P719hwEG0sMSeUZWmazC1hmmDITZ7NE5lok2Axl5zYTIDsBpYyAtSkkGQCG2wyBpqO0F2PbdZZZeem8-B1qRpfVNpvldOFOtzUxVIt3KdKpRQpkA5wvQN497G2oVVVEYwtS11btw6KEJFy4ADQSXkvNd6F4G2-fwNY_QSuDgNXfeDd3dVfj_ur34Q7Ae4Fbt38k_kNhyuTjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287515111</pqid></control><display><type>article</type><title>hypeR: an R package for geneset enrichment workflows</title><source>Oxford University Press Open Access</source><creator>Federico, Anthony ; Monti, Stefano</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Federico, Anthony ; Monti, Stefano ; Wren, Jonathan</creatorcontrib><description>Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases. Availability and implementation The most recent version of the package is available at https://github.com/montilab/hypeR.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz700</identifier><identifier>PMID: 31498385</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes ; High-Throughput Nucleotide Sequencing ; Software ; Workflow</subject><ispartof>Bioinformatics, 2020-02, Vol.36 (4), p.1307-1308</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</citedby><cites>FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998712/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998712/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz700$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31498385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><title>hypeR: an R package for geneset enrichment workflows</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases. Availability and implementation The most recent version of the package is available at https://github.com/montilab/hypeR.</description><subject>Applications Notes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Software</subject><subject>Workflow</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRbK3-BCVHL7E7-5HsehCk-AWCUHpfNttNG5tk425qqb_eSGqxN08zzLzzzMuL0CXgG8CSjrPCFXXufKXbwoRx1n6lGB-hIbAExwRzedz1NEljJjAdoLMQ3jHmwBg7RQMKTAoq-BCx5bax09tI19E0arRZ6YWNOmy0sLUNto1s7QuzrGzdRhvnV3npNuEcneS6DPZiV0do9vgwmzzHr29PL5P719hwEG0sMSeUZWmazC1hmmDITZ7NE5lok2Axl5zYTIDsBpYyAtSkkGQCG2wyBpqO0F2PbdZZZeem8-B1qRpfVNpvldOFOtzUxVIt3KdKpRQpkA5wvQN497G2oVVVEYwtS11btw6KEJFy4ADQSXkvNd6F4G2-fwNY_QSuDgNXfeDd3dVfj_ur34Q7Ae4Fbt38k_kNhyuTjQ</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Federico, Anthony</creator><creator>Monti, Stefano</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200215</creationdate><title>hypeR: an R package for geneset enrichment workflows</title><author>Federico, Anthony ; Monti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications Notes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Federico, Anthony</au><au>Monti, Stefano</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>hypeR: an R package for geneset enrichment workflows</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>36</volume><issue>4</issue><spage>1307</spage><epage>1308</epage><pages>1307-1308</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases. Availability and implementation The most recent version of the package is available at https://github.com/montilab/hypeR.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31498385</pmid><doi>10.1093/bioinformatics/btz700</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-02, Vol.36 (4), p.1307-1308
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998712
source Oxford University Press Open Access
subjects Applications Notes
High-Throughput Nucleotide Sequencing
Software
Workflow
title hypeR: an R package for geneset enrichment workflows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=hypeR:%20an%20R%20package%20for%20geneset%20enrichment%20workflows&rft.jtitle=Bioinformatics&rft.au=Federico,%20Anthony&rft.date=2020-02-15&rft.volume=36&rft.issue=4&rft.spage=1307&rft.epage=1308&rft.pages=1307-1308&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz700&rft_dat=%3Cproquest_TOX%3E2287515111%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287515111&rft_id=info:pmid/31498385&rft_oup_id=10.1093/bioinformatics/btz700&rfr_iscdi=true