Loading…
hypeR: an R package for geneset enrichment workflows
Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. W...
Saved in:
Published in: | Bioinformatics 2020-02, Vol.36 (4), p.1307-1308 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3 |
container_end_page | 1308 |
container_issue | 4 |
container_start_page | 1307 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Federico, Anthony Monti, Stefano |
description | Abstract
Summary
Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.
Availability and implementation
The most recent version of the package is available at https://github.com/montilab/hypeR. |
doi_str_mv | 10.1093/bioinformatics/btz700 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz700</oup_id><sourcerecordid>2287515111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3-BCVHL7E7-5HsehCk-AWCUHpfNttNG5tk425qqb_eSGqxN08zzLzzzMuL0CXgG8CSjrPCFXXufKXbwoRx1n6lGB-hIbAExwRzedz1NEljJjAdoLMQ3jHmwBg7RQMKTAoq-BCx5bax09tI19E0arRZ6YWNOmy0sLUNto1s7QuzrGzdRhvnV3npNuEcneS6DPZiV0do9vgwmzzHr29PL5P719hwEG0sMSeUZWmazC1hmmDITZ7NE5lok2Axl5zYTIDsBpYyAtSkkGQCG2wyBpqO0F2PbdZZZeem8-B1qRpfVNpvldOFOtzUxVIt3KdKpRQpkA5wvQN497G2oVVVEYwtS11btw6KEJFy4ADQSXkvNd6F4G2-fwNY_QSuDgNXfeDd3dVfj_ur34Q7Ae4Fbt38k_kNhyuTjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287515111</pqid></control><display><type>article</type><title>hypeR: an R package for geneset enrichment workflows</title><source>Oxford University Press Open Access</source><creator>Federico, Anthony ; Monti, Stefano</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Federico, Anthony ; Monti, Stefano ; Wren, Jonathan</creatorcontrib><description>Abstract
Summary
Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.
Availability and implementation
The most recent version of the package is available at https://github.com/montilab/hypeR.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz700</identifier><identifier>PMID: 31498385</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes ; High-Throughput Nucleotide Sequencing ; Software ; Workflow</subject><ispartof>Bioinformatics, 2020-02, Vol.36 (4), p.1307-1308</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</citedby><cites>FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998712/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998712/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz700$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31498385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><title>hypeR: an R package for geneset enrichment workflows</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Summary
Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.
Availability and implementation
The most recent version of the package is available at https://github.com/montilab/hypeR.</description><subject>Applications Notes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Software</subject><subject>Workflow</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRbK3-BCVHL7E7-5HsehCk-AWCUHpfNttNG5tk425qqb_eSGqxN08zzLzzzMuL0CXgG8CSjrPCFXXufKXbwoRx1n6lGB-hIbAExwRzedz1NEljJjAdoLMQ3jHmwBg7RQMKTAoq-BCx5bax09tI19E0arRZ6YWNOmy0sLUNto1s7QuzrGzdRhvnV3npNuEcneS6DPZiV0do9vgwmzzHr29PL5P719hwEG0sMSeUZWmazC1hmmDITZ7NE5lok2Axl5zYTIDsBpYyAtSkkGQCG2wyBpqO0F2PbdZZZeem8-B1qRpfVNpvldOFOtzUxVIt3KdKpRQpkA5wvQN497G2oVVVEYwtS11btw6KEJFy4ADQSXkvNd6F4G2-fwNY_QSuDgNXfeDd3dVfj_ur34Q7Ae4Fbt38k_kNhyuTjQ</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Federico, Anthony</creator><creator>Monti, Stefano</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200215</creationdate><title>hypeR: an R package for geneset enrichment workflows</title><author>Federico, Anthony ; Monti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications Notes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Federico, Anthony</au><au>Monti, Stefano</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>hypeR: an R package for geneset enrichment workflows</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>36</volume><issue>4</issue><spage>1307</spage><epage>1308</epage><pages>1307-1308</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Summary
Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.
Availability and implementation
The most recent version of the package is available at https://github.com/montilab/hypeR.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31498385</pmid><doi>10.1093/bioinformatics/btz700</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-02, Vol.36 (4), p.1307-1308 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998712 |
source | Oxford University Press Open Access |
subjects | Applications Notes High-Throughput Nucleotide Sequencing Software Workflow |
title | hypeR: an R package for geneset enrichment workflows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=hypeR:%20an%20R%20package%20for%20geneset%20enrichment%20workflows&rft.jtitle=Bioinformatics&rft.au=Federico,%20Anthony&rft.date=2020-02-15&rft.volume=36&rft.issue=4&rft.spage=1307&rft.epage=1308&rft.pages=1307-1308&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz700&rft_dat=%3Cproquest_TOX%3E2287515111%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-905234b776de24a201fcfbd696ac608d952eb819696e34213c716b80c0cb41a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287515111&rft_id=info:pmid/31498385&rft_oup_id=10.1093/bioinformatics/btz700&rfr_iscdi=true |