Loading…

Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics

: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [ F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML)...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2021-03, Vol.13 (6), p.1249
Main Authors: Krajnc, Denis, Papp, Laszlo, Nakuz, Thomas S, Magometschnigg, Heinrich F, Grahovac, Marko, Spielvogel, Clemens P, Ecsedi, Boglarka, Bago-Horvath, Zsuzsanna, Haug, Alexander, Karanikas, Georgios, Beyer, Thomas, Hacker, Marcus, Helbich, Thomas H, Pinker, Katja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53
cites cdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53
container_end_page
container_issue 6
container_start_page 1249
container_title Cancers
container_volume 13
creator Krajnc, Denis
Papp, Laszlo
Nakuz, Thomas S
Magometschnigg, Heinrich F
Grahovac, Marko
Spielvogel, Clemens P
Ecsedi, Boglarka
Bago-Horvath, Zsuzsanna
Haug, Alexander
Karanikas, Georgios
Beyer, Thomas
Hacker, Marcus
Helbich, Thomas H
Pinker, Katja
description : This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [ F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. : A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [ F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. : Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. : Predictive models based on [ F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.
doi_str_mv 10.3390/cancers13061249
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508571475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EolXpmRuyxIVLuv5OfEGCtFsqVaJC2xNC1sR2dl0l8WInRfSvJ6GlKvXFlt5v3sz4IfSWkhPONVlZGKxPmXKiKBP6BTpkpGSFUlq8fPI-QMc535D5cE5LVb5GB5xXRBNZHqLuc_KQR7yZ-phwvYMEdvQp3MEY4oCvcxi2-DumFV7_WJ-eF1dnm1W9wRc9bBeljn0TBu_wrzDu8CmMgK-S36doff5bCoPD38CF2Aeb36BXLXTZHz_cR-h6fbapvxSXX88v6k-XhRWMjkXDfalYRZxrtdMtl1bqltISpJJMSdEwK7RwjXai9U6DAykYa5WVM994yY_Qx3vf_dT03lk_jAk6s0-hh_TbRAjmf2UIO7ONt6aaP6miZDb48GCQ4s_J59H0IVvfdTD4OGXDJKlkSUW59Hr_DL2JUxrm9RZqCaFSeqZW95RNMefk28dhKDFLmOZZmHPFu6c7PPL_ouN_APDqm9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502072869</pqid></control><display><type>article</type><title>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Krajnc, Denis ; Papp, Laszlo ; Nakuz, Thomas S ; Magometschnigg, Heinrich F ; Grahovac, Marko ; Spielvogel, Clemens P ; Ecsedi, Boglarka ; Bago-Horvath, Zsuzsanna ; Haug, Alexander ; Karanikas, Georgios ; Beyer, Thomas ; Hacker, Marcus ; Helbich, Thomas H ; Pinker, Katja</creator><creatorcontrib>Krajnc, Denis ; Papp, Laszlo ; Nakuz, Thomas S ; Magometschnigg, Heinrich F ; Grahovac, Marko ; Spielvogel, Clemens P ; Ecsedi, Boglarka ; Bago-Horvath, Zsuzsanna ; Haug, Alexander ; Karanikas, Georgios ; Beyer, Thomas ; Hacker, Marcus ; Helbich, Thomas H ; Pinker, Katja</creatorcontrib><description>: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [ F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. : A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [ F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. : Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. : Predictive models based on [ F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13061249</identifier><identifier>PMID: 33809057</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Algorithms ; Biopsy ; Body mass index ; Breast cancer ; Cancer therapies ; Computed tomography ; Data processing ; Estrogens ; Gene amplification ; Learning algorithms ; Machine learning ; Mammography ; Metastasis ; Patients ; Positron emission tomography ; Prediction models ; Radiomics ; Standardization ; Tomography ; Tumors</subject><ispartof>Cancers, 2021-03, Vol.13 (6), p.1249</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</citedby><cites>FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</cites><orcidid>0000-0003-1786-4297 ; 0000-0002-4222-4083 ; 0000-0003-3169-778X ; 0000-0002-8308-6174 ; 0000-0002-3323-778X ; 0000-0002-9049-9989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2502072869/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2502072869?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33809057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajnc, Denis</creatorcontrib><creatorcontrib>Papp, Laszlo</creatorcontrib><creatorcontrib>Nakuz, Thomas S</creatorcontrib><creatorcontrib>Magometschnigg, Heinrich F</creatorcontrib><creatorcontrib>Grahovac, Marko</creatorcontrib><creatorcontrib>Spielvogel, Clemens P</creatorcontrib><creatorcontrib>Ecsedi, Boglarka</creatorcontrib><creatorcontrib>Bago-Horvath, Zsuzsanna</creatorcontrib><creatorcontrib>Haug, Alexander</creatorcontrib><creatorcontrib>Karanikas, Georgios</creatorcontrib><creatorcontrib>Beyer, Thomas</creatorcontrib><creatorcontrib>Hacker, Marcus</creatorcontrib><creatorcontrib>Helbich, Thomas H</creatorcontrib><creatorcontrib>Pinker, Katja</creatorcontrib><title>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [ F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. : A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [ F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. : Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. : Predictive models based on [ F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.</description><subject>Age</subject><subject>Algorithms</subject><subject>Biopsy</subject><subject>Body mass index</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Computed tomography</subject><subject>Data processing</subject><subject>Estrogens</subject><subject>Gene amplification</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Metastasis</subject><subject>Patients</subject><subject>Positron emission tomography</subject><subject>Prediction models</subject><subject>Radiomics</subject><subject>Standardization</subject><subject>Tomography</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1v1DAQxS0EolXpmRuyxIVLuv5OfEGCtFsqVaJC2xNC1sR2dl0l8WInRfSvJ6GlKvXFlt5v3sz4IfSWkhPONVlZGKxPmXKiKBP6BTpkpGSFUlq8fPI-QMc535D5cE5LVb5GB5xXRBNZHqLuc_KQR7yZ-phwvYMEdvQp3MEY4oCvcxi2-DumFV7_WJ-eF1dnm1W9wRc9bBeljn0TBu_wrzDu8CmMgK-S36doff5bCoPD38CF2Aeb36BXLXTZHz_cR-h6fbapvxSXX88v6k-XhRWMjkXDfalYRZxrtdMtl1bqltISpJJMSdEwK7RwjXai9U6DAykYa5WVM994yY_Qx3vf_dT03lk_jAk6s0-hh_TbRAjmf2UIO7ONt6aaP6miZDb48GCQ4s_J59H0IVvfdTD4OGXDJKlkSUW59Hr_DL2JUxrm9RZqCaFSeqZW95RNMefk28dhKDFLmOZZmHPFu6c7PPL_ouN_APDqm9I</recordid><startdate>20210312</startdate><enddate>20210312</enddate><creator>Krajnc, Denis</creator><creator>Papp, Laszlo</creator><creator>Nakuz, Thomas S</creator><creator>Magometschnigg, Heinrich F</creator><creator>Grahovac, Marko</creator><creator>Spielvogel, Clemens P</creator><creator>Ecsedi, Boglarka</creator><creator>Bago-Horvath, Zsuzsanna</creator><creator>Haug, Alexander</creator><creator>Karanikas, Georgios</creator><creator>Beyer, Thomas</creator><creator>Hacker, Marcus</creator><creator>Helbich, Thomas H</creator><creator>Pinker, Katja</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1786-4297</orcidid><orcidid>https://orcid.org/0000-0002-4222-4083</orcidid><orcidid>https://orcid.org/0000-0003-3169-778X</orcidid><orcidid>https://orcid.org/0000-0002-8308-6174</orcidid><orcidid>https://orcid.org/0000-0002-3323-778X</orcidid><orcidid>https://orcid.org/0000-0002-9049-9989</orcidid></search><sort><creationdate>20210312</creationdate><title>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</title><author>Krajnc, Denis ; Papp, Laszlo ; Nakuz, Thomas S ; Magometschnigg, Heinrich F ; Grahovac, Marko ; Spielvogel, Clemens P ; Ecsedi, Boglarka ; Bago-Horvath, Zsuzsanna ; Haug, Alexander ; Karanikas, Georgios ; Beyer, Thomas ; Hacker, Marcus ; Helbich, Thomas H ; Pinker, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Algorithms</topic><topic>Biopsy</topic><topic>Body mass index</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Computed tomography</topic><topic>Data processing</topic><topic>Estrogens</topic><topic>Gene amplification</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Metastasis</topic><topic>Patients</topic><topic>Positron emission tomography</topic><topic>Prediction models</topic><topic>Radiomics</topic><topic>Standardization</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajnc, Denis</creatorcontrib><creatorcontrib>Papp, Laszlo</creatorcontrib><creatorcontrib>Nakuz, Thomas S</creatorcontrib><creatorcontrib>Magometschnigg, Heinrich F</creatorcontrib><creatorcontrib>Grahovac, Marko</creatorcontrib><creatorcontrib>Spielvogel, Clemens P</creatorcontrib><creatorcontrib>Ecsedi, Boglarka</creatorcontrib><creatorcontrib>Bago-Horvath, Zsuzsanna</creatorcontrib><creatorcontrib>Haug, Alexander</creatorcontrib><creatorcontrib>Karanikas, Georgios</creatorcontrib><creatorcontrib>Beyer, Thomas</creatorcontrib><creatorcontrib>Hacker, Marcus</creatorcontrib><creatorcontrib>Helbich, Thomas H</creatorcontrib><creatorcontrib>Pinker, Katja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajnc, Denis</au><au>Papp, Laszlo</au><au>Nakuz, Thomas S</au><au>Magometschnigg, Heinrich F</au><au>Grahovac, Marko</au><au>Spielvogel, Clemens P</au><au>Ecsedi, Boglarka</au><au>Bago-Horvath, Zsuzsanna</au><au>Haug, Alexander</au><au>Karanikas, Georgios</au><au>Beyer, Thomas</au><au>Hacker, Marcus</au><au>Helbich, Thomas H</au><au>Pinker, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2021-03-12</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>1249</spage><pages>1249-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [ F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. : A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [ F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. : Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. : Predictive models based on [ F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33809057</pmid><doi>10.3390/cancers13061249</doi><orcidid>https://orcid.org/0000-0003-1786-4297</orcidid><orcidid>https://orcid.org/0000-0002-4222-4083</orcidid><orcidid>https://orcid.org/0000-0003-3169-778X</orcidid><orcidid>https://orcid.org/0000-0002-8308-6174</orcidid><orcidid>https://orcid.org/0000-0002-3323-778X</orcidid><orcidid>https://orcid.org/0000-0002-9049-9989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-03, Vol.13 (6), p.1249
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000810
source Open Access: PubMed Central; Publicly Available Content Database
subjects Age
Algorithms
Biopsy
Body mass index
Breast cancer
Cancer therapies
Computed tomography
Data processing
Estrogens
Gene amplification
Learning algorithms
Machine learning
Mammography
Metastasis
Patients
Positron emission tomography
Prediction models
Radiomics
Standardization
Tomography
Tumors
title Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Tumor%20Characterization%20Using%20%5B%2018%20F%5DFDG-PET/CT%20Imaging%20Combined%20with%20Data%20Preprocessing%20and%20Radiomics&rft.jtitle=Cancers&rft.au=Krajnc,%20Denis&rft.date=2021-03-12&rft.volume=13&rft.issue=6&rft.spage=1249&rft.pages=1249-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13061249&rft_dat=%3Cproquest_pubme%3E2508571475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502072869&rft_id=info:pmid/33809057&rfr_iscdi=true