Loading…
Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics
: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [ F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML)...
Saved in:
Published in: | Cancers 2021-03, Vol.13 (6), p.1249 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53 |
container_end_page | |
container_issue | 6 |
container_start_page | 1249 |
container_title | Cancers |
container_volume | 13 |
creator | Krajnc, Denis Papp, Laszlo Nakuz, Thomas S Magometschnigg, Heinrich F Grahovac, Marko Spielvogel, Clemens P Ecsedi, Boglarka Bago-Horvath, Zsuzsanna Haug, Alexander Karanikas, Georgios Beyer, Thomas Hacker, Marcus Helbich, Thomas H Pinker, Katja |
description | : This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [
F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification.
: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [
F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds.
: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV
model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype.
: Predictive models based on [
F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype. |
doi_str_mv | 10.3390/cancers13061249 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508571475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EolXpmRuyxIVLuv5OfEGCtFsqVaJC2xNC1sR2dl0l8WInRfSvJ6GlKvXFlt5v3sz4IfSWkhPONVlZGKxPmXKiKBP6BTpkpGSFUlq8fPI-QMc535D5cE5LVb5GB5xXRBNZHqLuc_KQR7yZ-phwvYMEdvQp3MEY4oCvcxi2-DumFV7_WJ-eF1dnm1W9wRc9bBeljn0TBu_wrzDu8CmMgK-S36doff5bCoPD38CF2Aeb36BXLXTZHz_cR-h6fbapvxSXX88v6k-XhRWMjkXDfalYRZxrtdMtl1bqltISpJJMSdEwK7RwjXai9U6DAykYa5WVM994yY_Qx3vf_dT03lk_jAk6s0-hh_TbRAjmf2UIO7ONt6aaP6miZDb48GCQ4s_J59H0IVvfdTD4OGXDJKlkSUW59Hr_DL2JUxrm9RZqCaFSeqZW95RNMefk28dhKDFLmOZZmHPFu6c7PPL_ouN_APDqm9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502072869</pqid></control><display><type>article</type><title>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Krajnc, Denis ; Papp, Laszlo ; Nakuz, Thomas S ; Magometschnigg, Heinrich F ; Grahovac, Marko ; Spielvogel, Clemens P ; Ecsedi, Boglarka ; Bago-Horvath, Zsuzsanna ; Haug, Alexander ; Karanikas, Georgios ; Beyer, Thomas ; Hacker, Marcus ; Helbich, Thomas H ; Pinker, Katja</creator><creatorcontrib>Krajnc, Denis ; Papp, Laszlo ; Nakuz, Thomas S ; Magometschnigg, Heinrich F ; Grahovac, Marko ; Spielvogel, Clemens P ; Ecsedi, Boglarka ; Bago-Horvath, Zsuzsanna ; Haug, Alexander ; Karanikas, Georgios ; Beyer, Thomas ; Hacker, Marcus ; Helbich, Thomas H ; Pinker, Katja</creatorcontrib><description>: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [
F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification.
: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [
F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds.
: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV
model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype.
: Predictive models based on [
F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13061249</identifier><identifier>PMID: 33809057</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Algorithms ; Biopsy ; Body mass index ; Breast cancer ; Cancer therapies ; Computed tomography ; Data processing ; Estrogens ; Gene amplification ; Learning algorithms ; Machine learning ; Mammography ; Metastasis ; Patients ; Positron emission tomography ; Prediction models ; Radiomics ; Standardization ; Tomography ; Tumors</subject><ispartof>Cancers, 2021-03, Vol.13 (6), p.1249</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</citedby><cites>FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</cites><orcidid>0000-0003-1786-4297 ; 0000-0002-4222-4083 ; 0000-0003-3169-778X ; 0000-0002-8308-6174 ; 0000-0002-3323-778X ; 0000-0002-9049-9989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2502072869/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2502072869?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33809057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajnc, Denis</creatorcontrib><creatorcontrib>Papp, Laszlo</creatorcontrib><creatorcontrib>Nakuz, Thomas S</creatorcontrib><creatorcontrib>Magometschnigg, Heinrich F</creatorcontrib><creatorcontrib>Grahovac, Marko</creatorcontrib><creatorcontrib>Spielvogel, Clemens P</creatorcontrib><creatorcontrib>Ecsedi, Boglarka</creatorcontrib><creatorcontrib>Bago-Horvath, Zsuzsanna</creatorcontrib><creatorcontrib>Haug, Alexander</creatorcontrib><creatorcontrib>Karanikas, Georgios</creatorcontrib><creatorcontrib>Beyer, Thomas</creatorcontrib><creatorcontrib>Hacker, Marcus</creatorcontrib><creatorcontrib>Helbich, Thomas H</creatorcontrib><creatorcontrib>Pinker, Katja</creatorcontrib><title>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [
F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification.
: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [
F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds.
: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV
model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype.
: Predictive models based on [
F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.</description><subject>Age</subject><subject>Algorithms</subject><subject>Biopsy</subject><subject>Body mass index</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Computed tomography</subject><subject>Data processing</subject><subject>Estrogens</subject><subject>Gene amplification</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Metastasis</subject><subject>Patients</subject><subject>Positron emission tomography</subject><subject>Prediction models</subject><subject>Radiomics</subject><subject>Standardization</subject><subject>Tomography</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1v1DAQxS0EolXpmRuyxIVLuv5OfEGCtFsqVaJC2xNC1sR2dl0l8WInRfSvJ6GlKvXFlt5v3sz4IfSWkhPONVlZGKxPmXKiKBP6BTpkpGSFUlq8fPI-QMc535D5cE5LVb5GB5xXRBNZHqLuc_KQR7yZ-phwvYMEdvQp3MEY4oCvcxi2-DumFV7_WJ-eF1dnm1W9wRc9bBeljn0TBu_wrzDu8CmMgK-S36doff5bCoPD38CF2Aeb36BXLXTZHz_cR-h6fbapvxSXX88v6k-XhRWMjkXDfalYRZxrtdMtl1bqltISpJJMSdEwK7RwjXai9U6DAykYa5WVM994yY_Qx3vf_dT03lk_jAk6s0-hh_TbRAjmf2UIO7ONt6aaP6miZDb48GCQ4s_J59H0IVvfdTD4OGXDJKlkSUW59Hr_DL2JUxrm9RZqCaFSeqZW95RNMefk28dhKDFLmOZZmHPFu6c7PPL_ouN_APDqm9I</recordid><startdate>20210312</startdate><enddate>20210312</enddate><creator>Krajnc, Denis</creator><creator>Papp, Laszlo</creator><creator>Nakuz, Thomas S</creator><creator>Magometschnigg, Heinrich F</creator><creator>Grahovac, Marko</creator><creator>Spielvogel, Clemens P</creator><creator>Ecsedi, Boglarka</creator><creator>Bago-Horvath, Zsuzsanna</creator><creator>Haug, Alexander</creator><creator>Karanikas, Georgios</creator><creator>Beyer, Thomas</creator><creator>Hacker, Marcus</creator><creator>Helbich, Thomas H</creator><creator>Pinker, Katja</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1786-4297</orcidid><orcidid>https://orcid.org/0000-0002-4222-4083</orcidid><orcidid>https://orcid.org/0000-0003-3169-778X</orcidid><orcidid>https://orcid.org/0000-0002-8308-6174</orcidid><orcidid>https://orcid.org/0000-0002-3323-778X</orcidid><orcidid>https://orcid.org/0000-0002-9049-9989</orcidid></search><sort><creationdate>20210312</creationdate><title>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</title><author>Krajnc, Denis ; Papp, Laszlo ; Nakuz, Thomas S ; Magometschnigg, Heinrich F ; Grahovac, Marko ; Spielvogel, Clemens P ; Ecsedi, Boglarka ; Bago-Horvath, Zsuzsanna ; Haug, Alexander ; Karanikas, Georgios ; Beyer, Thomas ; Hacker, Marcus ; Helbich, Thomas H ; Pinker, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Algorithms</topic><topic>Biopsy</topic><topic>Body mass index</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Computed tomography</topic><topic>Data processing</topic><topic>Estrogens</topic><topic>Gene amplification</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Metastasis</topic><topic>Patients</topic><topic>Positron emission tomography</topic><topic>Prediction models</topic><topic>Radiomics</topic><topic>Standardization</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajnc, Denis</creatorcontrib><creatorcontrib>Papp, Laszlo</creatorcontrib><creatorcontrib>Nakuz, Thomas S</creatorcontrib><creatorcontrib>Magometschnigg, Heinrich F</creatorcontrib><creatorcontrib>Grahovac, Marko</creatorcontrib><creatorcontrib>Spielvogel, Clemens P</creatorcontrib><creatorcontrib>Ecsedi, Boglarka</creatorcontrib><creatorcontrib>Bago-Horvath, Zsuzsanna</creatorcontrib><creatorcontrib>Haug, Alexander</creatorcontrib><creatorcontrib>Karanikas, Georgios</creatorcontrib><creatorcontrib>Beyer, Thomas</creatorcontrib><creatorcontrib>Hacker, Marcus</creatorcontrib><creatorcontrib>Helbich, Thomas H</creatorcontrib><creatorcontrib>Pinker, Katja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajnc, Denis</au><au>Papp, Laszlo</au><au>Nakuz, Thomas S</au><au>Magometschnigg, Heinrich F</au><au>Grahovac, Marko</au><au>Spielvogel, Clemens P</au><au>Ecsedi, Boglarka</au><au>Bago-Horvath, Zsuzsanna</au><au>Haug, Alexander</au><au>Karanikas, Georgios</au><au>Beyer, Thomas</au><au>Hacker, Marcus</au><au>Helbich, Thomas H</au><au>Pinker, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2021-03-12</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>1249</spage><pages>1249-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [
F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification.
: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [
F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds.
: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46-0.68 AUC). SUV
model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype.
: Predictive models based on [
F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33809057</pmid><doi>10.3390/cancers13061249</doi><orcidid>https://orcid.org/0000-0003-1786-4297</orcidid><orcidid>https://orcid.org/0000-0002-4222-4083</orcidid><orcidid>https://orcid.org/0000-0003-3169-778X</orcidid><orcidid>https://orcid.org/0000-0002-8308-6174</orcidid><orcidid>https://orcid.org/0000-0002-3323-778X</orcidid><orcidid>https://orcid.org/0000-0002-9049-9989</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2021-03, Vol.13 (6), p.1249 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000810 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Age Algorithms Biopsy Body mass index Breast cancer Cancer therapies Computed tomography Data processing Estrogens Gene amplification Learning algorithms Machine learning Mammography Metastasis Patients Positron emission tomography Prediction models Radiomics Standardization Tomography Tumors |
title | Breast Tumor Characterization Using [ 18 F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Tumor%20Characterization%20Using%20%5B%2018%20F%5DFDG-PET/CT%20Imaging%20Combined%20with%20Data%20Preprocessing%20and%20Radiomics&rft.jtitle=Cancers&rft.au=Krajnc,%20Denis&rft.date=2021-03-12&rft.volume=13&rft.issue=6&rft.spage=1249&rft.pages=1249-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13061249&rft_dat=%3Cproquest_pubme%3E2508571475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-b3e76280ddf9d9f35c59f117a5652654b2c494db9d4fed9ada5422f6c5f9dbe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502072869&rft_id=info:pmid/33809057&rfr_iscdi=true |