Loading…

Using natural language processing to classify social work interventions

Health care organizations are increasingly employing social workers to address patients' social needs. However, social work (SW) activities in health care settings are largely captured as text data within electronic health records (EHRs), making measurement and analysis difficult. This study ai...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of managed care 2021-01, Vol.27 (1), p.e24-e31
Main Authors: Bako, Abdulaziz Tijjani, Taylor, Heather L, Wiley, Jr, Kevin, Zheng, Jiaping, Walter-McCabe, Heather, Kasthurirathne, Suranga N, Vest, Joshua R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Health care organizations are increasingly employing social workers to address patients' social needs. However, social work (SW) activities in health care settings are largely captured as text data within electronic health records (EHRs), making measurement and analysis difficult. This study aims to extract and classify, from EHR notes, interventions intended to address patients' social needs using natural language processing (NLP) and machine learning (ML) algorithms. Secondary data analysis of a longitudinal cohort. We extracted 815 SW encounter notes from the EHR system of a federally qualified health center. We reviewed the literature to derive a 10-category classification scheme for SW interventions. We applied NLP and ML algorithms to categorize the documented SW interventions in EHR notes according to the 10-category classification scheme. Most of the SW notes (n = 598; 73.4%) contained at least 1 SW intervention. The most frequent interventions offered by social workers included care coordination (21.5%), education (21.0%), financial planning (18.5%), referral to community services and organizations (17.1%), and supportive counseling (15.3%). High-performing classification algorithms included the kernelized support vector machine (SVM) (accuracy, 0.97), logistic regression (accuracy, 0.96), linear SVM (accuracy, 0.95), and multinomial naive Bayes classifier (accuracy, 0.92). NLP and ML can be utilized for automated identification and classification of SW interventions documented in EHRs. Health care administrators can leverage this automated approach to gain better insight into the most needed social interventions in the patient population served by their organizations. Such information can be applied in managerial decisions related to SW staffing, resource allocation, and patients' social needs.
ISSN:1088-0224
1936-2692
DOI:10.37765/AJMC.2021.88580