Loading…

Using weak supervision and deep learning to classify clinical notes for identification of current suicidal ideation

Mental health concerns, such as suicidal thoughts, are frequently documented by providers in clinical notes, as opposed to structured coded data. In this study, we evaluated weakly supervised methods for detecting “current” suicidal ideation from unstructured clinical notes in electronic health reco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of psychiatric research 2021-04, Vol.136, p.95-102
Main Authors: Cusick, Marika, Adekkanattu, Prakash, Campion, Thomas R., Sholle, Evan T., Myers, Annie, Banerjee, Samprit, Alexopoulos, George, Wang, Yanshan, Pathak, Jyotishman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mental health concerns, such as suicidal thoughts, are frequently documented by providers in clinical notes, as opposed to structured coded data. In this study, we evaluated weakly supervised methods for detecting “current” suicidal ideation from unstructured clinical notes in electronic health record (EHR) systems. Weakly supervised machine learning methods leverage imperfect labels for training, alleviating the burden of creating a large manually annotated dataset. After identifying a cohort of 600 patients at risk for suicidal ideation, we used a rule-based natural language processing approach (NLP) approach to label the training and validation notes (n = 17,978). Using this large corpus of clinical notes, we trained several statistical machine learning models—logistic classifier, support vector machines (SVM), Naive Bayes classifier—and one deep learning model, namely a text classification convolutional neural network (CNN), to be evaluated on a manually-reviewed test set (n = 837). The CNN model outperformed all other methods, achieving an overall accuracy of 94% and a F1-score of 0.82 on documents with “current” suicidal ideation. This algorithm correctly identified an additional 42 encounters and 9 patients indicative of suicidal ideation but missing a structured diagnosis code. When applied to a random subset of 5,000 clinical notes, the algorithm classified 0.46% (n = 23) for “current” suicidal ideation, of which 87% were truly indicative via manual review. Implementation of this approach for large-scale document screening may play an important role in point-of-care clinical information systems for targeted suicide prevention interventions and improve research on the pathways from ideation to attempt.
ISSN:0022-3956
1879-1379
DOI:10.1016/j.jpsychires.2021.01.052