Loading…
Soil moisture–atmosphere feedback dominates land carbon uptake variability
Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations 1 . It remains uncertain to what extent temperature and water availability can explain these variations at the global scale 2 – 5 . Here we use factorial cl...
Saved in:
Published in: | Nature (London) 2021-04, Vol.592 (7852), p.65-69 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213 |
---|---|
cites | cdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213 |
container_end_page | 69 |
container_issue | 7852 |
container_start_page | 65 |
container_title | Nature (London) |
container_volume | 592 |
creator | Humphrey, Vincent Berg, Alexis Ciais, Philippe Gentine, Pierre Jung, Martin Reichstein, Markus Seneviratne, Sonia I. Frankenberg, Christian |
description | Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations
1
. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale
2
–
5
. Here we use factorial climate model simulations
6
and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role
4
, which is not readily apparent from land surface model simulations and observational analyses
2
,
5
. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally
5
,
7
, as well as when conducting field-scale investigations of the response of the ecosystem to droughts
8
,
9
. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.
Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity. |
doi_str_mv | 10.1038/s41586-021-03325-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8012209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509035818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtSoQnbb8AAsUiRWLtNfP2BukqgJaaaQuoGvLjj0dt0k82MlI3fEP_CFfgqfpCxasrnTvedyjg9A7DMcYqDzJDHMpaiC4BkoJr_keWmDWiJoJ2bxCCwAia5BU7KODnG8AgOOGvUH7lDYKGCMLtPwWQ1f1MeRxSv73z19m7GPerH3y1cp7Z017W7nYh8GMPledGVzVmmTjUE2b0dz6amtSMDZ0Ybw7Qq9Xpsv-7cM8RFdfPn8_O6-Xl18vzk6XdSsIGWtODXaYEmsMd0IQEFQJ2rqmVc4KqzCAYoSYhjhJ6e5rh5m1LWEFVNLSQ_Rp1t1Mtveu9cOYTKc3KfQm3elogv77MoS1vo5bLQETAqoIfJwF1v_Qzk-XercDipWCBm93Zh8ezFL8Mfk86ps4paHk04SDAsollgVFZlSbYs7Jr55kMehdW3puS5f_9X1bmhfS-5c5niiP9RQAnQG5nIZrn569_yP7B4N_oKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509035818</pqid></control><display><type>article</type><title>Soil moisture–atmosphere feedback dominates land carbon uptake variability</title><source>Nature</source><creator>Humphrey, Vincent ; Berg, Alexis ; Ciais, Philippe ; Gentine, Pierre ; Jung, Martin ; Reichstein, Markus ; Seneviratne, Sonia I. ; Frankenberg, Christian</creator><creatorcontrib>Humphrey, Vincent ; Berg, Alexis ; Ciais, Philippe ; Gentine, Pierre ; Jung, Martin ; Reichstein, Markus ; Seneviratne, Sonia I. ; Frankenberg, Christian</creatorcontrib><description>Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations
1
. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale
2
–
5
. Here we use factorial climate model simulations
6
and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role
4
, which is not readily apparent from land surface model simulations and observational analyses
2
,
5
. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally
5
,
7
, as well as when conducting field-scale investigations of the response of the ecosystem to droughts
8
,
9
. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.
Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03325-5</identifier><identifier>PMID: 33790442</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/823 ; 704/106/47/4113 ; 704/106/694/1108 ; 704/47/4113 ; Annual variations ; Anomalies ; Atmosphere ; Atmosphere - chemistry ; Atmospheric models ; Carbon ; Carbon Cycle ; Carbon dioxide ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Carbon dioxide atmospheric concentrations ; Carbon dioxide concentration ; Carbon uptake ; Climate change ; Climate models ; Drought ; Ecosystem ; Ecosystems ; Experiments ; Feedback ; Humanities and Social Sciences ; Humidity ; Interannual variability ; Land surface models ; Moisture content ; multidisciplinary ; Photosynthesis ; Pressure effects ; Respiration ; Science ; Science (multidisciplinary) ; Sciences of the Universe ; Sensitivity analysis ; Soil - chemistry ; Soil moisture ; Soil stresses ; Soil temperature ; Soil water ; Temperature ; Temperature effects ; Terrestrial ecosystems ; Vapor pressure ; Water - analysis ; Water - metabolism ; Water availability ; Water stress</subject><ispartof>Nature (London), 2021-04, Vol.592 (7852), p.65-69</ispartof><rights>The Author(s) 2021</rights><rights>Copyright Nature Publishing Group Apr 1, 2021</rights><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</citedby><cites>FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</cites><orcidid>0000-0002-7588-1004 ; 0000-0002-2541-6382 ; 0000-0001-8560-4943 ; 0000-0001-9528-2917 ; 0000-0002-0546-5857 ; 0000-0001-5736-1112 ; 0000-0002-0845-8345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33790442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03199071$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Humphrey, Vincent</creatorcontrib><creatorcontrib>Berg, Alexis</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Gentine, Pierre</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Seneviratne, Sonia I.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><title>Soil moisture–atmosphere feedback dominates land carbon uptake variability</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations
1
. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale
2
–
5
. Here we use factorial climate model simulations
6
and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role
4
, which is not readily apparent from land surface model simulations and observational analyses
2
,
5
. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally
5
,
7
, as well as when conducting field-scale investigations of the response of the ecosystem to droughts
8
,
9
. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.
Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.</description><subject>704/106/35/823</subject><subject>704/106/47/4113</subject><subject>704/106/694/1108</subject><subject>704/47/4113</subject><subject>Annual variations</subject><subject>Anomalies</subject><subject>Atmosphere</subject><subject>Atmosphere - chemistry</subject><subject>Atmospheric models</subject><subject>Carbon</subject><subject>Carbon Cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide concentration</subject><subject>Carbon uptake</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Drought</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Humanities and Social Sciences</subject><subject>Humidity</subject><subject>Interannual variability</subject><subject>Land surface models</subject><subject>Moisture content</subject><subject>multidisciplinary</subject><subject>Photosynthesis</subject><subject>Pressure effects</subject><subject>Respiration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sciences of the Universe</subject><subject>Sensitivity analysis</subject><subject>Soil - chemistry</subject><subject>Soil moisture</subject><subject>Soil stresses</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Terrestrial ecosystems</subject><subject>Vapor pressure</subject><subject>Water - analysis</subject><subject>Water - metabolism</subject><subject>Water availability</subject><subject>Water stress</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUtSoQnbb8AAsUiRWLtNfP2BukqgJaaaQuoGvLjj0dt0k82MlI3fEP_CFfgqfpCxasrnTvedyjg9A7DMcYqDzJDHMpaiC4BkoJr_keWmDWiJoJ2bxCCwAia5BU7KODnG8AgOOGvUH7lDYKGCMLtPwWQ1f1MeRxSv73z19m7GPerH3y1cp7Z017W7nYh8GMPledGVzVmmTjUE2b0dz6amtSMDZ0Ybw7Qq9Xpsv-7cM8RFdfPn8_O6-Xl18vzk6XdSsIGWtODXaYEmsMd0IQEFQJ2rqmVc4KqzCAYoSYhjhJ6e5rh5m1LWEFVNLSQ_Rp1t1Mtveu9cOYTKc3KfQm3elogv77MoS1vo5bLQETAqoIfJwF1v_Qzk-XercDipWCBm93Zh8ezFL8Mfk86ps4paHk04SDAsollgVFZlSbYs7Jr55kMehdW3puS5f_9X1bmhfS-5c5niiP9RQAnQG5nIZrn569_yP7B4N_oKk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Humphrey, Vincent</creator><creator>Berg, Alexis</creator><creator>Ciais, Philippe</creator><creator>Gentine, Pierre</creator><creator>Jung, Martin</creator><creator>Reichstein, Markus</creator><creator>Seneviratne, Sonia I.</creator><creator>Frankenberg, Christian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7588-1004</orcidid><orcidid>https://orcid.org/0000-0002-2541-6382</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-9528-2917</orcidid><orcidid>https://orcid.org/0000-0002-0546-5857</orcidid><orcidid>https://orcid.org/0000-0001-5736-1112</orcidid><orcidid>https://orcid.org/0000-0002-0845-8345</orcidid></search><sort><creationdate>20210401</creationdate><title>Soil moisture–atmosphere feedback dominates land carbon uptake variability</title><author>Humphrey, Vincent ; Berg, Alexis ; Ciais, Philippe ; Gentine, Pierre ; Jung, Martin ; Reichstein, Markus ; Seneviratne, Sonia I. ; Frankenberg, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106/35/823</topic><topic>704/106/47/4113</topic><topic>704/106/694/1108</topic><topic>704/47/4113</topic><topic>Annual variations</topic><topic>Anomalies</topic><topic>Atmosphere</topic><topic>Atmosphere - chemistry</topic><topic>Atmospheric models</topic><topic>Carbon</topic><topic>Carbon Cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide concentration</topic><topic>Carbon uptake</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Drought</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Humanities and Social Sciences</topic><topic>Humidity</topic><topic>Interannual variability</topic><topic>Land surface models</topic><topic>Moisture content</topic><topic>multidisciplinary</topic><topic>Photosynthesis</topic><topic>Pressure effects</topic><topic>Respiration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sciences of the Universe</topic><topic>Sensitivity analysis</topic><topic>Soil - chemistry</topic><topic>Soil moisture</topic><topic>Soil stresses</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Terrestrial ecosystems</topic><topic>Vapor pressure</topic><topic>Water - analysis</topic><topic>Water - metabolism</topic><topic>Water availability</topic><topic>Water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Humphrey, Vincent</creatorcontrib><creatorcontrib>Berg, Alexis</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Gentine, Pierre</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Seneviratne, Sonia I.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humphrey, Vincent</au><au>Berg, Alexis</au><au>Ciais, Philippe</au><au>Gentine, Pierre</au><au>Jung, Martin</au><au>Reichstein, Markus</au><au>Seneviratne, Sonia I.</au><au>Frankenberg, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil moisture–atmosphere feedback dominates land carbon uptake variability</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>592</volume><issue>7852</issue><spage>65</spage><epage>69</epage><pages>65-69</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations
1
. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale
2
–
5
. Here we use factorial climate model simulations
6
and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role
4
, which is not readily apparent from land surface model simulations and observational analyses
2
,
5
. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally
5
,
7
, as well as when conducting field-scale investigations of the response of the ecosystem to droughts
8
,
9
. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.
Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33790442</pmid><doi>10.1038/s41586-021-03325-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7588-1004</orcidid><orcidid>https://orcid.org/0000-0002-2541-6382</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-9528-2917</orcidid><orcidid>https://orcid.org/0000-0002-0546-5857</orcidid><orcidid>https://orcid.org/0000-0001-5736-1112</orcidid><orcidid>https://orcid.org/0000-0002-0845-8345</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-04, Vol.592 (7852), p.65-69 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8012209 |
source | Nature |
subjects | 704/106/35/823 704/106/47/4113 704/106/694/1108 704/47/4113 Annual variations Anomalies Atmosphere Atmosphere - chemistry Atmospheric models Carbon Carbon Cycle Carbon dioxide Carbon Dioxide - analysis Carbon Dioxide - metabolism Carbon dioxide atmospheric concentrations Carbon dioxide concentration Carbon uptake Climate change Climate models Drought Ecosystem Ecosystems Experiments Feedback Humanities and Social Sciences Humidity Interannual variability Land surface models Moisture content multidisciplinary Photosynthesis Pressure effects Respiration Science Science (multidisciplinary) Sciences of the Universe Sensitivity analysis Soil - chemistry Soil moisture Soil stresses Soil temperature Soil water Temperature Temperature effects Terrestrial ecosystems Vapor pressure Water - analysis Water - metabolism Water availability Water stress |
title | Soil moisture–atmosphere feedback dominates land carbon uptake variability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20moisture%E2%80%93atmosphere%20feedback%20dominates%20land%20carbon%20uptake%20variability&rft.jtitle=Nature%20(London)&rft.au=Humphrey,%20Vincent&rft.date=2021-04-01&rft.volume=592&rft.issue=7852&rft.spage=65&rft.epage=69&rft.pages=65-69&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03325-5&rft_dat=%3Cproquest_pubme%3E2509035818%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509035818&rft_id=info:pmid/33790442&rfr_iscdi=true |