Loading…

Soil moisture–atmosphere feedback dominates land carbon uptake variability

Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations 1 . It remains uncertain to what extent temperature and water availability can explain these variations at the global scale 2 – 5 . Here we use factorial cl...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2021-04, Vol.592 (7852), p.65-69
Main Authors: Humphrey, Vincent, Berg, Alexis, Ciais, Philippe, Gentine, Pierre, Jung, Martin, Reichstein, Markus, Seneviratne, Sonia I., Frankenberg, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213
cites cdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213
container_end_page 69
container_issue 7852
container_start_page 65
container_title Nature (London)
container_volume 592
creator Humphrey, Vincent
Berg, Alexis
Ciais, Philippe
Gentine, Pierre
Jung, Martin
Reichstein, Markus
Seneviratne, Sonia I.
Frankenberg, Christian
description Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations 1 . It remains uncertain to what extent temperature and water availability can explain these variations at the global scale 2 – 5 . Here we use factorial climate model simulations 6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role 4 , which is not readily apparent from land surface model simulations and observational analyses 2 , 5 . These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally 5 , 7 , as well as when conducting field-scale investigations of the response of the ecosystem to droughts 8 , 9 . Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture. Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.
doi_str_mv 10.1038/s41586-021-03325-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8012209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509035818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtSoQnbb8AAsUiRWLtNfP2BukqgJaaaQuoGvLjj0dt0k82MlI3fEP_CFfgqfpCxasrnTvedyjg9A7DMcYqDzJDHMpaiC4BkoJr_keWmDWiJoJ2bxCCwAia5BU7KODnG8AgOOGvUH7lDYKGCMLtPwWQ1f1MeRxSv73z19m7GPerH3y1cp7Z017W7nYh8GMPledGVzVmmTjUE2b0dz6amtSMDZ0Ybw7Qq9Xpsv-7cM8RFdfPn8_O6-Xl18vzk6XdSsIGWtODXaYEmsMd0IQEFQJ2rqmVc4KqzCAYoSYhjhJ6e5rh5m1LWEFVNLSQ_Rp1t1Mtveu9cOYTKc3KfQm3elogv77MoS1vo5bLQETAqoIfJwF1v_Qzk-XercDipWCBm93Zh8ezFL8Mfk86ps4paHk04SDAsollgVFZlSbYs7Jr55kMehdW3puS5f_9X1bmhfS-5c5niiP9RQAnQG5nIZrn569_yP7B4N_oKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509035818</pqid></control><display><type>article</type><title>Soil moisture–atmosphere feedback dominates land carbon uptake variability</title><source>Nature</source><creator>Humphrey, Vincent ; Berg, Alexis ; Ciais, Philippe ; Gentine, Pierre ; Jung, Martin ; Reichstein, Markus ; Seneviratne, Sonia I. ; Frankenberg, Christian</creator><creatorcontrib>Humphrey, Vincent ; Berg, Alexis ; Ciais, Philippe ; Gentine, Pierre ; Jung, Martin ; Reichstein, Markus ; Seneviratne, Sonia I. ; Frankenberg, Christian</creatorcontrib><description>Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations 1 . It remains uncertain to what extent temperature and water availability can explain these variations at the global scale 2 – 5 . Here we use factorial climate model simulations 6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role 4 , which is not readily apparent from land surface model simulations and observational analyses 2 , 5 . These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally 5 , 7 , as well as when conducting field-scale investigations of the response of the ecosystem to droughts 8 , 9 . Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture. Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03325-5</identifier><identifier>PMID: 33790442</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/823 ; 704/106/47/4113 ; 704/106/694/1108 ; 704/47/4113 ; Annual variations ; Anomalies ; Atmosphere ; Atmosphere - chemistry ; Atmospheric models ; Carbon ; Carbon Cycle ; Carbon dioxide ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Carbon dioxide atmospheric concentrations ; Carbon dioxide concentration ; Carbon uptake ; Climate change ; Climate models ; Drought ; Ecosystem ; Ecosystems ; Experiments ; Feedback ; Humanities and Social Sciences ; Humidity ; Interannual variability ; Land surface models ; Moisture content ; multidisciplinary ; Photosynthesis ; Pressure effects ; Respiration ; Science ; Science (multidisciplinary) ; Sciences of the Universe ; Sensitivity analysis ; Soil - chemistry ; Soil moisture ; Soil stresses ; Soil temperature ; Soil water ; Temperature ; Temperature effects ; Terrestrial ecosystems ; Vapor pressure ; Water - analysis ; Water - metabolism ; Water availability ; Water stress</subject><ispartof>Nature (London), 2021-04, Vol.592 (7852), p.65-69</ispartof><rights>The Author(s) 2021</rights><rights>Copyright Nature Publishing Group Apr 1, 2021</rights><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</citedby><cites>FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</cites><orcidid>0000-0002-7588-1004 ; 0000-0002-2541-6382 ; 0000-0001-8560-4943 ; 0000-0001-9528-2917 ; 0000-0002-0546-5857 ; 0000-0001-5736-1112 ; 0000-0002-0845-8345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33790442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03199071$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Humphrey, Vincent</creatorcontrib><creatorcontrib>Berg, Alexis</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Gentine, Pierre</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Seneviratne, Sonia I.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><title>Soil moisture–atmosphere feedback dominates land carbon uptake variability</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations 1 . It remains uncertain to what extent temperature and water availability can explain these variations at the global scale 2 – 5 . Here we use factorial climate model simulations 6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role 4 , which is not readily apparent from land surface model simulations and observational analyses 2 , 5 . These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally 5 , 7 , as well as when conducting field-scale investigations of the response of the ecosystem to droughts 8 , 9 . Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture. Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.</description><subject>704/106/35/823</subject><subject>704/106/47/4113</subject><subject>704/106/694/1108</subject><subject>704/47/4113</subject><subject>Annual variations</subject><subject>Anomalies</subject><subject>Atmosphere</subject><subject>Atmosphere - chemistry</subject><subject>Atmospheric models</subject><subject>Carbon</subject><subject>Carbon Cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide concentration</subject><subject>Carbon uptake</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Drought</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Humanities and Social Sciences</subject><subject>Humidity</subject><subject>Interannual variability</subject><subject>Land surface models</subject><subject>Moisture content</subject><subject>multidisciplinary</subject><subject>Photosynthesis</subject><subject>Pressure effects</subject><subject>Respiration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sciences of the Universe</subject><subject>Sensitivity analysis</subject><subject>Soil - chemistry</subject><subject>Soil moisture</subject><subject>Soil stresses</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Terrestrial ecosystems</subject><subject>Vapor pressure</subject><subject>Water - analysis</subject><subject>Water - metabolism</subject><subject>Water availability</subject><subject>Water stress</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUtSoQnbb8AAsUiRWLtNfP2BukqgJaaaQuoGvLjj0dt0k82MlI3fEP_CFfgqfpCxasrnTvedyjg9A7DMcYqDzJDHMpaiC4BkoJr_keWmDWiJoJ2bxCCwAia5BU7KODnG8AgOOGvUH7lDYKGCMLtPwWQ1f1MeRxSv73z19m7GPerH3y1cp7Z017W7nYh8GMPledGVzVmmTjUE2b0dz6amtSMDZ0Ybw7Qq9Xpsv-7cM8RFdfPn8_O6-Xl18vzk6XdSsIGWtODXaYEmsMd0IQEFQJ2rqmVc4KqzCAYoSYhjhJ6e5rh5m1LWEFVNLSQ_Rp1t1Mtveu9cOYTKc3KfQm3elogv77MoS1vo5bLQETAqoIfJwF1v_Qzk-XercDipWCBm93Zh8ezFL8Mfk86ps4paHk04SDAsollgVFZlSbYs7Jr55kMehdW3puS5f_9X1bmhfS-5c5niiP9RQAnQG5nIZrn569_yP7B4N_oKk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Humphrey, Vincent</creator><creator>Berg, Alexis</creator><creator>Ciais, Philippe</creator><creator>Gentine, Pierre</creator><creator>Jung, Martin</creator><creator>Reichstein, Markus</creator><creator>Seneviratne, Sonia I.</creator><creator>Frankenberg, Christian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7588-1004</orcidid><orcidid>https://orcid.org/0000-0002-2541-6382</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-9528-2917</orcidid><orcidid>https://orcid.org/0000-0002-0546-5857</orcidid><orcidid>https://orcid.org/0000-0001-5736-1112</orcidid><orcidid>https://orcid.org/0000-0002-0845-8345</orcidid></search><sort><creationdate>20210401</creationdate><title>Soil moisture–atmosphere feedback dominates land carbon uptake variability</title><author>Humphrey, Vincent ; Berg, Alexis ; Ciais, Philippe ; Gentine, Pierre ; Jung, Martin ; Reichstein, Markus ; Seneviratne, Sonia I. ; Frankenberg, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106/35/823</topic><topic>704/106/47/4113</topic><topic>704/106/694/1108</topic><topic>704/47/4113</topic><topic>Annual variations</topic><topic>Anomalies</topic><topic>Atmosphere</topic><topic>Atmosphere - chemistry</topic><topic>Atmospheric models</topic><topic>Carbon</topic><topic>Carbon Cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide concentration</topic><topic>Carbon uptake</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Drought</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Humanities and Social Sciences</topic><topic>Humidity</topic><topic>Interannual variability</topic><topic>Land surface models</topic><topic>Moisture content</topic><topic>multidisciplinary</topic><topic>Photosynthesis</topic><topic>Pressure effects</topic><topic>Respiration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sciences of the Universe</topic><topic>Sensitivity analysis</topic><topic>Soil - chemistry</topic><topic>Soil moisture</topic><topic>Soil stresses</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Terrestrial ecosystems</topic><topic>Vapor pressure</topic><topic>Water - analysis</topic><topic>Water - metabolism</topic><topic>Water availability</topic><topic>Water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Humphrey, Vincent</creatorcontrib><creatorcontrib>Berg, Alexis</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Gentine, Pierre</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Seneviratne, Sonia I.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humphrey, Vincent</au><au>Berg, Alexis</au><au>Ciais, Philippe</au><au>Gentine, Pierre</au><au>Jung, Martin</au><au>Reichstein, Markus</au><au>Seneviratne, Sonia I.</au><au>Frankenberg, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil moisture–atmosphere feedback dominates land carbon uptake variability</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>592</volume><issue>7852</issue><spage>65</spage><epage>69</epage><pages>65-69</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations 1 . It remains uncertain to what extent temperature and water availability can explain these variations at the global scale 2 – 5 . Here we use factorial climate model simulations 6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role 4 , which is not readily apparent from land surface model simulations and observational analyses 2 , 5 . These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally 5 , 7 , as well as when conducting field-scale investigations of the response of the ecosystem to droughts 8 , 9 . Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture. Factorial climate model simulations show that 90% of the inter-annual variability in global land carbon uptake is driven by soil moisture and its atmospheric feedback on temperature and air humidity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33790442</pmid><doi>10.1038/s41586-021-03325-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7588-1004</orcidid><orcidid>https://orcid.org/0000-0002-2541-6382</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0001-9528-2917</orcidid><orcidid>https://orcid.org/0000-0002-0546-5857</orcidid><orcidid>https://orcid.org/0000-0001-5736-1112</orcidid><orcidid>https://orcid.org/0000-0002-0845-8345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-04, Vol.592 (7852), p.65-69
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8012209
source Nature
subjects 704/106/35/823
704/106/47/4113
704/106/694/1108
704/47/4113
Annual variations
Anomalies
Atmosphere
Atmosphere - chemistry
Atmospheric models
Carbon
Carbon Cycle
Carbon dioxide
Carbon Dioxide - analysis
Carbon Dioxide - metabolism
Carbon dioxide atmospheric concentrations
Carbon dioxide concentration
Carbon uptake
Climate change
Climate models
Drought
Ecosystem
Ecosystems
Experiments
Feedback
Humanities and Social Sciences
Humidity
Interannual variability
Land surface models
Moisture content
multidisciplinary
Photosynthesis
Pressure effects
Respiration
Science
Science (multidisciplinary)
Sciences of the Universe
Sensitivity analysis
Soil - chemistry
Soil moisture
Soil stresses
Soil temperature
Soil water
Temperature
Temperature effects
Terrestrial ecosystems
Vapor pressure
Water - analysis
Water - metabolism
Water availability
Water stress
title Soil moisture–atmosphere feedback dominates land carbon uptake variability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20moisture%E2%80%93atmosphere%20feedback%20dominates%20land%20carbon%20uptake%20variability&rft.jtitle=Nature%20(London)&rft.au=Humphrey,%20Vincent&rft.date=2021-04-01&rft.volume=592&rft.issue=7852&rft.spage=65&rft.epage=69&rft.pages=65-69&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03325-5&rft_dat=%3Cproquest_pubme%3E2509035818%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-53a1d132baa5d662063963cd7c9db6b91009422a72d8330005d14bbc243cd0213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509035818&rft_id=info:pmid/33790442&rfr_iscdi=true