Loading…
The structures and gating mechanism of human calcium homeostasis modulator 2
Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca 2+ -inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity 1 – 3 . Dysfunction of CALHMs has previously been linked to neurological disorders 1 ....
Saved in:
Published in: | Nature (London) 2019-12, Vol.576 (7785), p.163-167 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623 |
---|---|
cites | cdi_FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623 |
container_end_page | 167 |
container_issue | 7785 |
container_start_page | 163 |
container_title | Nature (London) |
container_volume | 576 |
creator | Choi, Wooyoung Clemente, Nicolina Sun, Weinan Du, Juan Lü, Wei |
description | Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca
2+
-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity
1
–
3
. Dysfunction of CALHMs has previously been linked to neurological disorders
1
. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca
2+
-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1–S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels
4
–
8
. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.
Cryo-electron microscopy structures of the active and inhibited human CALHM2 channel suggest a two-stage gating mechanism in which the S1 helix adjusts the pore size, which is then fine-tuned by the N-terminal helix. |
doi_str_mv | 10.1038/s41586-019-1781-3 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8018591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660266230</galeid><sourcerecordid>A660266230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623</originalsourceid><addsrcrecordid>eNp10t2K1DAUB_AiijuuPoA3UvRGka45zWdvFobBj4VVQUe8DJk0bbO0yWzSir6Nz-KTmWHW3a3M0otA88u_pzkny54COgGExZtIgApWIKgK4AIKfC9bAOGsIEzw-9kCoVIUSGB2lD2K8QIhRIGTh9kRBs4ZBbrIPq47k8cxTHqcgom5cnXeqtG6Nh-M7pSzcch9k3fToFyuVa_tNOSdH4yPo4o25oOvp16NPvz5XT7OHjSqj-bJ1XqcfXv3dr36UJx_fn-2Wp4XmnM6FoA11qzBQmANGwCBuSirDQVGSYNBGcIFpxVTJadcpUJrpRUD0lREEcFKfJyd7nO302YwtTZuDKqX22AHFX5Jr6yc7zjbydb_kAKBoBWkgJdXAcFfTiaOcrBRm75XzvgpyhJDRYSgYkdf_Ecv_BRc-r2kSiZKQgDfqFb1RlrX-PRdvQuVS8ZQyVLVKKnigGqNM6lI70xj0-uZf37A6629lLfRyQGUntoMVh9MfTU7kMxofo6tmmKUZ1-_zO3ru-1y_X31aa5hr3XwMQbTXLcEkNyNrNyPrEwjK3cjK3c39-x2L69P_JvRBMo9iGnLtSbcNODu1L9-K_GD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326824413</pqid></control><display><type>article</type><title>The structures and gating mechanism of human calcium homeostasis modulator 2</title><source>Nature</source><creator>Choi, Wooyoung ; Clemente, Nicolina ; Sun, Weinan ; Du, Juan ; Lü, Wei</creator><creatorcontrib>Choi, Wooyoung ; Clemente, Nicolina ; Sun, Weinan ; Du, Juan ; Lü, Wei</creatorcontrib><description>Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca
2+
-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity
1
–
3
. Dysfunction of CALHMs has previously been linked to neurological disorders
1
. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca
2+
-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1–S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels
4
–
8
. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.
Cryo-electron microscopy structures of the active and inhibited human CALHM2 channel suggest a two-stage gating mechanism in which the S1 helix adjusts the pore size, which is then fine-tuned by the N-terminal helix.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1781-3</identifier><identifier>PMID: 31776515</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/45/269 ; 631/535/1258/1259 ; 82/80 ; 82/83 ; 9/74 ; Alzheimer's disease ; Automation ; Binding sites ; Calcium ; Calcium channels ; Calcium channels (voltage-gated) ; Calcium homeostasis ; Calcium ions ; Channel gating ; Conformation ; Connexins ; Cryoelectron Microscopy ; Domains ; Electron microscopy ; Gap junctions ; Genetic aspects ; Helices ; Homeostasis ; Humanities and Social Sciences ; Humans ; Ion Channel Gating ; Ion channels ; Ligands ; Microscopy ; Models, Molecular ; Modulators ; multidisciplinary ; Neuromodulation ; Physiological aspects ; Pore size ; Porosity ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Ruthenium ; Ruthenium red ; Science ; Science (multidisciplinary) ; Structure ; Symmetry ; Topology ; Transmembrane domains ; Vertical orientation</subject><ispartof>Nature (London), 2019-12, Vol.576 (7785), p.163-167</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623</citedby><cites>FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31776515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Wooyoung</creatorcontrib><creatorcontrib>Clemente, Nicolina</creatorcontrib><creatorcontrib>Sun, Weinan</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Lü, Wei</creatorcontrib><title>The structures and gating mechanism of human calcium homeostasis modulator 2</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca
2+
-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity
1
–
3
. Dysfunction of CALHMs has previously been linked to neurological disorders
1
. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca
2+
-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1–S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels
4
–
8
. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.
Cryo-electron microscopy structures of the active and inhibited human CALHM2 channel suggest a two-stage gating mechanism in which the S1 helix adjusts the pore size, which is then fine-tuned by the N-terminal helix.</description><subject>101/28</subject><subject>631/45/269</subject><subject>631/535/1258/1259</subject><subject>82/80</subject><subject>82/83</subject><subject>9/74</subject><subject>Alzheimer's disease</subject><subject>Automation</subject><subject>Binding sites</subject><subject>Calcium</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium homeostasis</subject><subject>Calcium ions</subject><subject>Channel gating</subject><subject>Conformation</subject><subject>Connexins</subject><subject>Cryoelectron Microscopy</subject><subject>Domains</subject><subject>Electron microscopy</subject><subject>Gap junctions</subject><subject>Genetic aspects</subject><subject>Helices</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Modulators</subject><subject>multidisciplinary</subject><subject>Neuromodulation</subject><subject>Physiological aspects</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Ruthenium</subject><subject>Ruthenium red</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure</subject><subject>Symmetry</subject><subject>Topology</subject><subject>Transmembrane domains</subject><subject>Vertical orientation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10t2K1DAUB_AiijuuPoA3UvRGka45zWdvFobBj4VVQUe8DJk0bbO0yWzSir6Nz-KTmWHW3a3M0otA88u_pzkny54COgGExZtIgApWIKgK4AIKfC9bAOGsIEzw-9kCoVIUSGB2lD2K8QIhRIGTh9kRBs4ZBbrIPq47k8cxTHqcgom5cnXeqtG6Nh-M7pSzcch9k3fToFyuVa_tNOSdH4yPo4o25oOvp16NPvz5XT7OHjSqj-bJ1XqcfXv3dr36UJx_fn-2Wp4XmnM6FoA11qzBQmANGwCBuSirDQVGSYNBGcIFpxVTJadcpUJrpRUD0lREEcFKfJyd7nO302YwtTZuDKqX22AHFX5Jr6yc7zjbydb_kAKBoBWkgJdXAcFfTiaOcrBRm75XzvgpyhJDRYSgYkdf_Ecv_BRc-r2kSiZKQgDfqFb1RlrX-PRdvQuVS8ZQyVLVKKnigGqNM6lI70xj0-uZf37A6629lLfRyQGUntoMVh9MfTU7kMxofo6tmmKUZ1-_zO3ru-1y_X31aa5hr3XwMQbTXLcEkNyNrNyPrEwjK3cjK3c39-x2L69P_JvRBMo9iGnLtSbcNODu1L9-K_GD</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Choi, Wooyoung</creator><creator>Clemente, Nicolina</creator><creator>Sun, Weinan</creator><creator>Du, Juan</creator><creator>Lü, Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201912</creationdate><title>The structures and gating mechanism of human calcium homeostasis modulator 2</title><author>Choi, Wooyoung ; Clemente, Nicolina ; Sun, Weinan ; Du, Juan ; Lü, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/28</topic><topic>631/45/269</topic><topic>631/535/1258/1259</topic><topic>82/80</topic><topic>82/83</topic><topic>9/74</topic><topic>Alzheimer's disease</topic><topic>Automation</topic><topic>Binding sites</topic><topic>Calcium</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium homeostasis</topic><topic>Calcium ions</topic><topic>Channel gating</topic><topic>Conformation</topic><topic>Connexins</topic><topic>Cryoelectron Microscopy</topic><topic>Domains</topic><topic>Electron microscopy</topic><topic>Gap junctions</topic><topic>Genetic aspects</topic><topic>Helices</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Modulators</topic><topic>multidisciplinary</topic><topic>Neuromodulation</topic><topic>Physiological aspects</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Ruthenium</topic><topic>Ruthenium red</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure</topic><topic>Symmetry</topic><topic>Topology</topic><topic>Transmembrane domains</topic><topic>Vertical orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Wooyoung</creatorcontrib><creatorcontrib>Clemente, Nicolina</creatorcontrib><creatorcontrib>Sun, Weinan</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Lü, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Wooyoung</au><au>Clemente, Nicolina</au><au>Sun, Weinan</au><au>Du, Juan</au><au>Lü, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structures and gating mechanism of human calcium homeostasis modulator 2</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-12</date><risdate>2019</risdate><volume>576</volume><issue>7785</issue><spage>163</spage><epage>167</epage><pages>163-167</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca
2+
-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity
1
–
3
. Dysfunction of CALHMs has previously been linked to neurological disorders
1
. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca
2+
-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1–S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels
4
–
8
. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.
Cryo-electron microscopy structures of the active and inhibited human CALHM2 channel suggest a two-stage gating mechanism in which the S1 helix adjusts the pore size, which is then fine-tuned by the N-terminal helix.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31776515</pmid><doi>10.1038/s41586-019-1781-3</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-12, Vol.576 (7785), p.163-167 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8018591 |
source | Nature |
subjects | 101/28 631/45/269 631/535/1258/1259 82/80 82/83 9/74 Alzheimer's disease Automation Binding sites Calcium Calcium channels Calcium channels (voltage-gated) Calcium homeostasis Calcium ions Channel gating Conformation Connexins Cryoelectron Microscopy Domains Electron microscopy Gap junctions Genetic aspects Helices Homeostasis Humanities and Social Sciences Humans Ion Channel Gating Ion channels Ligands Microscopy Models, Molecular Modulators multidisciplinary Neuromodulation Physiological aspects Pore size Porosity Protein Structure, Quaternary Protein Structure, Secondary Protein Structure, Tertiary Ruthenium Ruthenium red Science Science (multidisciplinary) Structure Symmetry Topology Transmembrane domains Vertical orientation |
title | The structures and gating mechanism of human calcium homeostasis modulator 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structures%20and%20gating%20mechanism%20of%20human%20calcium%20homeostasis%20modulator%C2%A02&rft.jtitle=Nature%20(London)&rft.au=Choi,%20Wooyoung&rft.date=2019-12&rft.volume=576&rft.issue=7785&rft.spage=163&rft.epage=167&rft.pages=163-167&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1781-3&rft_dat=%3Cgale_pubme%3EA660266230%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c775t-13c3c6f3883c1b11837829b51654f31ae4787596a2757a651daca614f94a48623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2326824413&rft_id=info:pmid/31776515&rft_galeid=A660266230&rfr_iscdi=true |