Loading…

Intradialytic hypotension and relationship with cognitive function and brain morphometry

Abstract Background The haemodynamic stress brought about by dialysis could justify the loss of structural and functional integrity of the central nervous system (CNS). The main objective of this study was to analyse the relationship between intradialytic hypotension (IDH) and cognitive function and...

Full description

Saved in:
Bibliographic Details
Published in:Clinical Kidney Journal 2021-04, Vol.14 (4), p.1156-1164
Main Authors: Cedeño, Santiago, Desco, Manuel, Aleman, Yasser, Macías, Nicolás, Fernández-Pena, Alberto, Vega, Almudena, Abad, Soraya, López-Gómez, Juan Manuel
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background The haemodynamic stress brought about by dialysis could justify the loss of structural and functional integrity of the central nervous system (CNS). The main objective of this study was to analyse the relationship between intradialytic hypotension (IDH) and cognitive function and brain morphometry. Methods The cross-sectional KIDBRAIN study (Cohort Study of Morphological Changes of the Brain by MRI in Chronic Kidney Disease Patients) included 68 prevalent patients with no history of neurological disorders (cerebrovascular disease and cognitive impairment) undergoing haemodialysis (HD). We analysed 18 non-consecutive dialysis sessions (first three of each month over a 6-month period) and various definitions of IDH were recorded. Global cognitive function (GCF) was assessed using the Mini-Mental State Examination (MMSE) and parameters of structural integrity of the CNS were obtained using volume morphometry magnetic resonance imaging analysis [grey matter (GM), white matter (WM) and hippocampus). Results A greater number of sessions with IDH were associated with less volume of WM (r = −0.359,P = 0.003) and hippocampus (r = −0.395, P = 0.001) independent of cardiovascular risk factors according to multivariable linear regression models (β = −0.198, P = 0.046 for WM; β = −0.253, P = 0.017 for hippocampus). The GCF by the MMSE was 27.3 ± 7.3.1 and was associated with WM volume (β = 0.403, P = 0.001) independent of GM and hippocampus volume. Symptomatic IDH was associated with GCF (r = −0.420, P 
ISSN:2048-8505
2048-8513
DOI:10.1093/ckj/sfaa070