Loading…

Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model

Abstract Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titratio...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2021-04, Vol.104 (4), p.924-934
Main Authors: Hebert, Jessica F, Millar, Jess A, Raghavan, Rahul, Romney, Amie, Podrabsky, Jason E, Rennie, Monique Y, Felker, Allison M, O’Tierney-Ginn, Perrie, Morita, Mayu, DuPriest, Elizabeth A, Morgan, Terry K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3
cites cdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3
container_end_page 934
container_issue 4
container_start_page 924
container_title Biology of reproduction
container_volume 104
creator Hebert, Jessica F
Millar, Jess A
Raghavan, Rahul
Romney, Amie
Podrabsky, Jason E
Rennie, Monique Y
Felker, Allison M
O’Tierney-Ginn, Perrie
Morita, Mayu
DuPriest, Elizabeth A
Morgan, Terry K
description Abstract Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction. Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.
doi_str_mv 10.1093/biolre/ioab006
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8023425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689970519</galeid><oup_id>10.1093/biolre/ioab006</oup_id><sourcerecordid>A689970519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</originalsourceid><addsrcrecordid>eNqFktFP3SAUxsmyZV51r3tcmviiD1UoLZQXE2OmM9H4os-E0kPFULiD1s3_fjT3zs3FZIFAcvidD77DQegzwccEC3rS2eAinNigOozZO7QiTSVKXrH2PVrhHCopZXQH7ab0iDGpaUU_oh1K60bwRqzQ3Y1yUBiYlCsS_CyUMaCnVMwTxLB2SoNfjpQfbBjAQ7KpsL4YYvgxPRQR0hStnmzwxRjmBHntwe2jD0a5BJ-2-x66v_h6d_6tvL69vDo_uy51Q8RUMkyEwdkFa2jfY71MZoSCDoDXlDcMU21oT5gAA0KDqlquOKGq63qjDN1Dpxvd9dyN0C9vjcrJdbSjis8yKCtfn3j7IIfwJFtc0bpqssDhViCG73M2I0ebNDinPGQ7sqp5y3lbszajB_-gj2GOPtuTVUNazjhj_A815LJK603I9-pFVJ6xVgiOs_NMHb9B5dHDaHXwYGyOv5WgY0gpgnnxSLBc-kBu-kBu-yAnfPm7Mi_474_PwNEGCPP6f2K_AESEwFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518767667</pqid></control><display><type>article</type><title>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</title><source>Oxford Journals Online</source><creator>Hebert, Jessica F ; Millar, Jess A ; Raghavan, Rahul ; Romney, Amie ; Podrabsky, Jason E ; Rennie, Monique Y ; Felker, Allison M ; O’Tierney-Ginn, Perrie ; Morita, Mayu ; DuPriest, Elizabeth A ; Morgan, Terry K</creator><creatorcontrib>Hebert, Jessica F ; Millar, Jess A ; Raghavan, Rahul ; Romney, Amie ; Podrabsky, Jason E ; Rennie, Monique Y ; Felker, Allison M ; O’Tierney-Ginn, Perrie ; Morita, Mayu ; DuPriest, Elizabeth A ; Morgan, Terry K</creatorcontrib><description>Abstract Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction. Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.</description><identifier>ISSN: 0006-3363</identifier><identifier>EISSN: 1529-7268</identifier><identifier>DOI: 10.1093/biolre/ioab006</identifier><identifier>PMID: 33459759</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Angiogenesis ; Animals ; Disease Models, Animal ; Female ; Fetal Development - physiology ; Fetal Growth Retardation - immunology ; Fetal Growth Retardation - pathology ; Fetal Growth Retardation - physiopathology ; Fetus - physiology ; Fetuses ; Genes ; Genetic aspects ; Genetic engineering ; Genotype &amp; phenotype ; Growth ; Hypertension ; Killer Cells, Natural - pathology ; Laboratory animals ; Male ; Males ; Medical research ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic - etiology ; Neovascularization, Pathologic - immunology ; Neovascularization, Pathologic - physiopathology ; Pathology ; Placenta ; Placenta - blood supply ; Placenta - immunology ; Placenta - pathology ; Placentation - physiology ; Pregnancy ; Rodents ; Sex Characteristics ; Sex Differentiation - physiology ; Tomography ; Uterus ; Uterus - blood supply ; Uterus - immunology ; Uterus - pathology ; Vascular endothelial growth factor ; Veins &amp; arteries</subject><ispartof>Biology of reproduction, 2021-04, Vol.104 (4), p.924-934</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</citedby><cites>FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33459759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hebert, Jessica F</creatorcontrib><creatorcontrib>Millar, Jess A</creatorcontrib><creatorcontrib>Raghavan, Rahul</creatorcontrib><creatorcontrib>Romney, Amie</creatorcontrib><creatorcontrib>Podrabsky, Jason E</creatorcontrib><creatorcontrib>Rennie, Monique Y</creatorcontrib><creatorcontrib>Felker, Allison M</creatorcontrib><creatorcontrib>O’Tierney-Ginn, Perrie</creatorcontrib><creatorcontrib>Morita, Mayu</creatorcontrib><creatorcontrib>DuPriest, Elizabeth A</creatorcontrib><creatorcontrib>Morgan, Terry K</creatorcontrib><title>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</title><title>Biology of reproduction</title><addtitle>Biol Reprod</addtitle><description>Abstract Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction. Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fetal Development - physiology</subject><subject>Fetal Growth Retardation - immunology</subject><subject>Fetal Growth Retardation - pathology</subject><subject>Fetal Growth Retardation - physiopathology</subject><subject>Fetus - physiology</subject><subject>Fetuses</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genotype &amp; phenotype</subject><subject>Growth</subject><subject>Hypertension</subject><subject>Killer Cells, Natural - pathology</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Males</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neovascularization, Pathologic - etiology</subject><subject>Neovascularization, Pathologic - immunology</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>Pathology</subject><subject>Placenta</subject><subject>Placenta - blood supply</subject><subject>Placenta - immunology</subject><subject>Placenta - pathology</subject><subject>Placentation - physiology</subject><subject>Pregnancy</subject><subject>Rodents</subject><subject>Sex Characteristics</subject><subject>Sex Differentiation - physiology</subject><subject>Tomography</subject><subject>Uterus</subject><subject>Uterus - blood supply</subject><subject>Uterus - immunology</subject><subject>Uterus - pathology</subject><subject>Vascular endothelial growth factor</subject><subject>Veins &amp; arteries</subject><issn>0006-3363</issn><issn>1529-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFktFP3SAUxsmyZV51r3tcmviiD1UoLZQXE2OmM9H4os-E0kPFULiD1s3_fjT3zs3FZIFAcvidD77DQegzwccEC3rS2eAinNigOozZO7QiTSVKXrH2PVrhHCopZXQH7ab0iDGpaUU_oh1K60bwRqzQ3Y1yUBiYlCsS_CyUMaCnVMwTxLB2SoNfjpQfbBjAQ7KpsL4YYvgxPRQR0hStnmzwxRjmBHntwe2jD0a5BJ-2-x66v_h6d_6tvL69vDo_uy51Q8RUMkyEwdkFa2jfY71MZoSCDoDXlDcMU21oT5gAA0KDqlquOKGq63qjDN1Dpxvd9dyN0C9vjcrJdbSjis8yKCtfn3j7IIfwJFtc0bpqssDhViCG73M2I0ebNDinPGQ7sqp5y3lbszajB_-gj2GOPtuTVUNazjhj_A815LJK603I9-pFVJ6xVgiOs_NMHb9B5dHDaHXwYGyOv5WgY0gpgnnxSLBc-kBu-kBu-yAnfPm7Mi_474_PwNEGCPP6f2K_AESEwFA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hebert, Jessica F</creator><creator>Millar, Jess A</creator><creator>Raghavan, Rahul</creator><creator>Romney, Amie</creator><creator>Podrabsky, Jason E</creator><creator>Rennie, Monique Y</creator><creator>Felker, Allison M</creator><creator>O’Tierney-Ginn, Perrie</creator><creator>Morita, Mayu</creator><creator>DuPriest, Elizabeth A</creator><creator>Morgan, Terry K</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</title><author>Hebert, Jessica F ; Millar, Jess A ; Raghavan, Rahul ; Romney, Amie ; Podrabsky, Jason E ; Rennie, Monique Y ; Felker, Allison M ; O’Tierney-Ginn, Perrie ; Morita, Mayu ; DuPriest, Elizabeth A ; Morgan, Terry K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fetal Development - physiology</topic><topic>Fetal Growth Retardation - immunology</topic><topic>Fetal Growth Retardation - pathology</topic><topic>Fetal Growth Retardation - physiopathology</topic><topic>Fetus - physiology</topic><topic>Fetuses</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genotype &amp; phenotype</topic><topic>Growth</topic><topic>Hypertension</topic><topic>Killer Cells, Natural - pathology</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Males</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neovascularization, Pathologic - etiology</topic><topic>Neovascularization, Pathologic - immunology</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>Pathology</topic><topic>Placenta</topic><topic>Placenta - blood supply</topic><topic>Placenta - immunology</topic><topic>Placenta - pathology</topic><topic>Placentation - physiology</topic><topic>Pregnancy</topic><topic>Rodents</topic><topic>Sex Characteristics</topic><topic>Sex Differentiation - physiology</topic><topic>Tomography</topic><topic>Uterus</topic><topic>Uterus - blood supply</topic><topic>Uterus - immunology</topic><topic>Uterus - pathology</topic><topic>Vascular endothelial growth factor</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hebert, Jessica F</creatorcontrib><creatorcontrib>Millar, Jess A</creatorcontrib><creatorcontrib>Raghavan, Rahul</creatorcontrib><creatorcontrib>Romney, Amie</creatorcontrib><creatorcontrib>Podrabsky, Jason E</creatorcontrib><creatorcontrib>Rennie, Monique Y</creatorcontrib><creatorcontrib>Felker, Allison M</creatorcontrib><creatorcontrib>O’Tierney-Ginn, Perrie</creatorcontrib><creatorcontrib>Morita, Mayu</creatorcontrib><creatorcontrib>DuPriest, Elizabeth A</creatorcontrib><creatorcontrib>Morgan, Terry K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biology of reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hebert, Jessica F</au><au>Millar, Jess A</au><au>Raghavan, Rahul</au><au>Romney, Amie</au><au>Podrabsky, Jason E</au><au>Rennie, Monique Y</au><au>Felker, Allison M</au><au>O’Tierney-Ginn, Perrie</au><au>Morita, Mayu</au><au>DuPriest, Elizabeth A</au><au>Morgan, Terry K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</atitle><jtitle>Biology of reproduction</jtitle><addtitle>Biol Reprod</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><spage>924</spage><epage>934</epage><pages>924-934</pages><issn>0006-3363</issn><eissn>1529-7268</eissn><abstract>Abstract Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction. Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33459759</pmid><doi>10.1093/biolre/ioab006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3363
ispartof Biology of reproduction, 2021-04, Vol.104 (4), p.924-934
issn 0006-3363
1529-7268
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8023425
source Oxford Journals Online
subjects Angiogenesis
Animals
Disease Models, Animal
Female
Fetal Development - physiology
Fetal Growth Retardation - immunology
Fetal Growth Retardation - pathology
Fetal Growth Retardation - physiopathology
Fetus - physiology
Fetuses
Genes
Genetic aspects
Genetic engineering
Genotype & phenotype
Growth
Hypertension
Killer Cells, Natural - pathology
Laboratory animals
Male
Males
Medical research
Mice
Mice, Inbred C57BL
Neovascularization, Pathologic - etiology
Neovascularization, Pathologic - immunology
Neovascularization, Pathologic - physiopathology
Pathology
Placenta
Placenta - blood supply
Placenta - immunology
Placenta - pathology
Placentation - physiology
Pregnancy
Rodents
Sex Characteristics
Sex Differentiation - physiology
Tomography
Uterus
Uterus - blood supply
Uterus - immunology
Uterus - pathology
Vascular endothelial growth factor
Veins & arteries
title Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Male%20fetal%20sex%20affects%20uteroplacental%20angiogenesis%20in%20growth%20restriction%20mouse%20model&rft.jtitle=Biology%20of%20reproduction&rft.au=Hebert,%20Jessica%20F&rft.date=2021-04-01&rft.volume=104&rft.issue=4&rft.spage=924&rft.epage=934&rft.pages=924-934&rft.issn=0006-3363&rft.eissn=1529-7268&rft_id=info:doi/10.1093/biolre/ioab006&rft_dat=%3Cgale_pubme%3EA689970519%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518767667&rft_id=info:pmid/33459759&rft_galeid=A689970519&rft_oup_id=10.1093/biolre/ioab006&rfr_iscdi=true