Loading…
Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model
Abstract Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titratio...
Saved in:
Published in: | Biology of reproduction 2021-04, Vol.104 (4), p.924-934 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3 |
container_end_page | 934 |
container_issue | 4 |
container_start_page | 924 |
container_title | Biology of reproduction |
container_volume | 104 |
creator | Hebert, Jessica F Millar, Jess A Raghavan, Rahul Romney, Amie Podrabsky, Jason E Rennie, Monique Y Felker, Allison M O’Tierney-Ginn, Perrie Morita, Mayu DuPriest, Elizabeth A Morgan, Terry K |
description | Abstract
Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction.
Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction. |
doi_str_mv | 10.1093/biolre/ioab006 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8023425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689970519</galeid><oup_id>10.1093/biolre/ioab006</oup_id><sourcerecordid>A689970519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</originalsourceid><addsrcrecordid>eNqFktFP3SAUxsmyZV51r3tcmviiD1UoLZQXE2OmM9H4os-E0kPFULiD1s3_fjT3zs3FZIFAcvidD77DQegzwccEC3rS2eAinNigOozZO7QiTSVKXrH2PVrhHCopZXQH7ab0iDGpaUU_oh1K60bwRqzQ3Y1yUBiYlCsS_CyUMaCnVMwTxLB2SoNfjpQfbBjAQ7KpsL4YYvgxPRQR0hStnmzwxRjmBHntwe2jD0a5BJ-2-x66v_h6d_6tvL69vDo_uy51Q8RUMkyEwdkFa2jfY71MZoSCDoDXlDcMU21oT5gAA0KDqlquOKGq63qjDN1Dpxvd9dyN0C9vjcrJdbSjis8yKCtfn3j7IIfwJFtc0bpqssDhViCG73M2I0ebNDinPGQ7sqp5y3lbszajB_-gj2GOPtuTVUNazjhj_A815LJK603I9-pFVJ6xVgiOs_NMHb9B5dHDaHXwYGyOv5WgY0gpgnnxSLBc-kBu-kBu-yAnfPm7Mi_474_PwNEGCPP6f2K_AESEwFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518767667</pqid></control><display><type>article</type><title>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</title><source>Oxford Journals Online</source><creator>Hebert, Jessica F ; Millar, Jess A ; Raghavan, Rahul ; Romney, Amie ; Podrabsky, Jason E ; Rennie, Monique Y ; Felker, Allison M ; O’Tierney-Ginn, Perrie ; Morita, Mayu ; DuPriest, Elizabeth A ; Morgan, Terry K</creator><creatorcontrib>Hebert, Jessica F ; Millar, Jess A ; Raghavan, Rahul ; Romney, Amie ; Podrabsky, Jason E ; Rennie, Monique Y ; Felker, Allison M ; O’Tierney-Ginn, Perrie ; Morita, Mayu ; DuPriest, Elizabeth A ; Morgan, Terry K</creatorcontrib><description>Abstract
Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction.
Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.</description><identifier>ISSN: 0006-3363</identifier><identifier>EISSN: 1529-7268</identifier><identifier>DOI: 10.1093/biolre/ioab006</identifier><identifier>PMID: 33459759</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Angiogenesis ; Animals ; Disease Models, Animal ; Female ; Fetal Development - physiology ; Fetal Growth Retardation - immunology ; Fetal Growth Retardation - pathology ; Fetal Growth Retardation - physiopathology ; Fetus - physiology ; Fetuses ; Genes ; Genetic aspects ; Genetic engineering ; Genotype & phenotype ; Growth ; Hypertension ; Killer Cells, Natural - pathology ; Laboratory animals ; Male ; Males ; Medical research ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic - etiology ; Neovascularization, Pathologic - immunology ; Neovascularization, Pathologic - physiopathology ; Pathology ; Placenta ; Placenta - blood supply ; Placenta - immunology ; Placenta - pathology ; Placentation - physiology ; Pregnancy ; Rodents ; Sex Characteristics ; Sex Differentiation - physiology ; Tomography ; Uterus ; Uterus - blood supply ; Uterus - immunology ; Uterus - pathology ; Vascular endothelial growth factor ; Veins & arteries</subject><ispartof>Biology of reproduction, 2021-04, Vol.104 (4), p.924-934</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</citedby><cites>FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33459759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hebert, Jessica F</creatorcontrib><creatorcontrib>Millar, Jess A</creatorcontrib><creatorcontrib>Raghavan, Rahul</creatorcontrib><creatorcontrib>Romney, Amie</creatorcontrib><creatorcontrib>Podrabsky, Jason E</creatorcontrib><creatorcontrib>Rennie, Monique Y</creatorcontrib><creatorcontrib>Felker, Allison M</creatorcontrib><creatorcontrib>O’Tierney-Ginn, Perrie</creatorcontrib><creatorcontrib>Morita, Mayu</creatorcontrib><creatorcontrib>DuPriest, Elizabeth A</creatorcontrib><creatorcontrib>Morgan, Terry K</creatorcontrib><title>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</title><title>Biology of reproduction</title><addtitle>Biol Reprod</addtitle><description>Abstract
Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction.
Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fetal Development - physiology</subject><subject>Fetal Growth Retardation - immunology</subject><subject>Fetal Growth Retardation - pathology</subject><subject>Fetal Growth Retardation - physiopathology</subject><subject>Fetus - physiology</subject><subject>Fetuses</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genotype & phenotype</subject><subject>Growth</subject><subject>Hypertension</subject><subject>Killer Cells, Natural - pathology</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Males</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neovascularization, Pathologic - etiology</subject><subject>Neovascularization, Pathologic - immunology</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>Pathology</subject><subject>Placenta</subject><subject>Placenta - blood supply</subject><subject>Placenta - immunology</subject><subject>Placenta - pathology</subject><subject>Placentation - physiology</subject><subject>Pregnancy</subject><subject>Rodents</subject><subject>Sex Characteristics</subject><subject>Sex Differentiation - physiology</subject><subject>Tomography</subject><subject>Uterus</subject><subject>Uterus - blood supply</subject><subject>Uterus - immunology</subject><subject>Uterus - pathology</subject><subject>Vascular endothelial growth factor</subject><subject>Veins & arteries</subject><issn>0006-3363</issn><issn>1529-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFktFP3SAUxsmyZV51r3tcmviiD1UoLZQXE2OmM9H4os-E0kPFULiD1s3_fjT3zs3FZIFAcvidD77DQegzwccEC3rS2eAinNigOozZO7QiTSVKXrH2PVrhHCopZXQH7ab0iDGpaUU_oh1K60bwRqzQ3Y1yUBiYlCsS_CyUMaCnVMwTxLB2SoNfjpQfbBjAQ7KpsL4YYvgxPRQR0hStnmzwxRjmBHntwe2jD0a5BJ-2-x66v_h6d_6tvL69vDo_uy51Q8RUMkyEwdkFa2jfY71MZoSCDoDXlDcMU21oT5gAA0KDqlquOKGq63qjDN1Dpxvd9dyN0C9vjcrJdbSjis8yKCtfn3j7IIfwJFtc0bpqssDhViCG73M2I0ebNDinPGQ7sqp5y3lbszajB_-gj2GOPtuTVUNazjhj_A815LJK603I9-pFVJ6xVgiOs_NMHb9B5dHDaHXwYGyOv5WgY0gpgnnxSLBc-kBu-kBu-yAnfPm7Mi_474_PwNEGCPP6f2K_AESEwFA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hebert, Jessica F</creator><creator>Millar, Jess A</creator><creator>Raghavan, Rahul</creator><creator>Romney, Amie</creator><creator>Podrabsky, Jason E</creator><creator>Rennie, Monique Y</creator><creator>Felker, Allison M</creator><creator>O’Tierney-Ginn, Perrie</creator><creator>Morita, Mayu</creator><creator>DuPriest, Elizabeth A</creator><creator>Morgan, Terry K</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</title><author>Hebert, Jessica F ; Millar, Jess A ; Raghavan, Rahul ; Romney, Amie ; Podrabsky, Jason E ; Rennie, Monique Y ; Felker, Allison M ; O’Tierney-Ginn, Perrie ; Morita, Mayu ; DuPriest, Elizabeth A ; Morgan, Terry K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fetal Development - physiology</topic><topic>Fetal Growth Retardation - immunology</topic><topic>Fetal Growth Retardation - pathology</topic><topic>Fetal Growth Retardation - physiopathology</topic><topic>Fetus - physiology</topic><topic>Fetuses</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genotype & phenotype</topic><topic>Growth</topic><topic>Hypertension</topic><topic>Killer Cells, Natural - pathology</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Males</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neovascularization, Pathologic - etiology</topic><topic>Neovascularization, Pathologic - immunology</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>Pathology</topic><topic>Placenta</topic><topic>Placenta - blood supply</topic><topic>Placenta - immunology</topic><topic>Placenta - pathology</topic><topic>Placentation - physiology</topic><topic>Pregnancy</topic><topic>Rodents</topic><topic>Sex Characteristics</topic><topic>Sex Differentiation - physiology</topic><topic>Tomography</topic><topic>Uterus</topic><topic>Uterus - blood supply</topic><topic>Uterus - immunology</topic><topic>Uterus - pathology</topic><topic>Vascular endothelial growth factor</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hebert, Jessica F</creatorcontrib><creatorcontrib>Millar, Jess A</creatorcontrib><creatorcontrib>Raghavan, Rahul</creatorcontrib><creatorcontrib>Romney, Amie</creatorcontrib><creatorcontrib>Podrabsky, Jason E</creatorcontrib><creatorcontrib>Rennie, Monique Y</creatorcontrib><creatorcontrib>Felker, Allison M</creatorcontrib><creatorcontrib>O’Tierney-Ginn, Perrie</creatorcontrib><creatorcontrib>Morita, Mayu</creatorcontrib><creatorcontrib>DuPriest, Elizabeth A</creatorcontrib><creatorcontrib>Morgan, Terry K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biology of reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hebert, Jessica F</au><au>Millar, Jess A</au><au>Raghavan, Rahul</au><au>Romney, Amie</au><au>Podrabsky, Jason E</au><au>Rennie, Monique Y</au><au>Felker, Allison M</au><au>O’Tierney-Ginn, Perrie</au><au>Morita, Mayu</au><au>DuPriest, Elizabeth A</au><au>Morgan, Terry K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model</atitle><jtitle>Biology of reproduction</jtitle><addtitle>Biol Reprod</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><spage>924</spage><epage>934</epage><pages>924-934</pages><issn>0006-3363</issn><eissn>1529-7268</eissn><abstract>Abstract
Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[−6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction.
Male fetal sex affects maternal uterine spiral artery angiogenesis and placental efficiency leading to intrauterine growth restriction.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33459759</pmid><doi>10.1093/biolre/ioab006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3363 |
ispartof | Biology of reproduction, 2021-04, Vol.104 (4), p.924-934 |
issn | 0006-3363 1529-7268 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8023425 |
source | Oxford Journals Online |
subjects | Angiogenesis Animals Disease Models, Animal Female Fetal Development - physiology Fetal Growth Retardation - immunology Fetal Growth Retardation - pathology Fetal Growth Retardation - physiopathology Fetus - physiology Fetuses Genes Genetic aspects Genetic engineering Genotype & phenotype Growth Hypertension Killer Cells, Natural - pathology Laboratory animals Male Males Medical research Mice Mice, Inbred C57BL Neovascularization, Pathologic - etiology Neovascularization, Pathologic - immunology Neovascularization, Pathologic - physiopathology Pathology Placenta Placenta - blood supply Placenta - immunology Placenta - pathology Placentation - physiology Pregnancy Rodents Sex Characteristics Sex Differentiation - physiology Tomography Uterus Uterus - blood supply Uterus - immunology Uterus - pathology Vascular endothelial growth factor Veins & arteries |
title | Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Male%20fetal%20sex%20affects%20uteroplacental%20angiogenesis%20in%20growth%20restriction%20mouse%20model&rft.jtitle=Biology%20of%20reproduction&rft.au=Hebert,%20Jessica%20F&rft.date=2021-04-01&rft.volume=104&rft.issue=4&rft.spage=924&rft.epage=934&rft.pages=924-934&rft.issn=0006-3363&rft.eissn=1529-7268&rft_id=info:doi/10.1093/biolre/ioab006&rft_dat=%3Cgale_pubme%3EA689970519%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-6019f0093653dd0cd0cd6f9aebee74375603cf3d169efe9cea287a713abbdfaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518767667&rft_id=info:pmid/33459759&rft_galeid=A689970519&rft_oup_id=10.1093/biolre/ioab006&rfr_iscdi=true |