Loading…

Tumour angiogenesis normalized by myo‐inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response

Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo‐inositol‐trispyrophosphate (ITPP) provides a means to achieve stable normalizat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine 2021-04, Vol.25 (7), p.3284-3299
Main Authors: El Hafny‐Rahbi, Bouchra, Brodaczewska, Klaudia, Collet, Guillaume, Majewska, Aleksandra, Klimkiewicz, Krzysztof, Delalande, Anthony, Grillon, Catherine, Kieda, Claudine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943
cites cdi_FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943
container_end_page 3299
container_issue 7
container_start_page 3284
container_title Journal of cellular and molecular medicine
container_volume 25
creator El Hafny‐Rahbi, Bouchra
Brodaczewska, Klaudia
Collet, Guillaume
Majewska, Aleksandra
Klimkiewicz, Krzysztof
Delalande, Anthony
Grillon, Catherine
Kieda, Claudine
description Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo‐inositol‐trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2) and stabilizes vessel normalization through activation of endothelial Phosphatase‐and‐Tensin‐homologue (PTEN). Here, we show that the tumour reduction due to the ITPP‐induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage‐type proportions, increased proportions of NK and CD8+T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+NK cells to tumour cells is due to their adhesion to PD‐L1+/PD‐L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD‐L1/PD‐L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA‐4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.
doi_str_mv 10.1111/jcmm.16399
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493005317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEoqVw4QGQJS6AtMWO7Ti-VKpWQEFbcSlny_V6N17FdrCThXDiETjwhDwJE7JU0EN9seX55p_RP1MUTwk-JXBe74z3p6SiUt4rjgmvywWTlN0_vElN66PiUc47jGlFqHxYHFFalYyx6rj4eTX4OCSkw9bFrQ02u4xCTF637ptdo-sR-TH--v7DhZhdH1vUJ5e7McWuiblrdG-Rblu7d_DKqBm7-NVp5ALqG4u8MynasHcpBm9DD2XWqEvRxwnWoXc9lE_IeT8Ei5LNXQzZPi4ebHSb7ZPDfVJ8evvmanmxWH189355vloYTrBcaG5MvTalEARzaSsmiaykNpJQLSghQlTMSIhXkpZUS2EYJIgNx0SwWjJ6UpzNut1w7e3aQIdJt6pLzus0qqid-j8SXKO2ca9qTME-AgIvZ4HmVtrF-UpNf5hSSbDg-4l9cSiW4ufB5l55l41tWx1sHLIqYWgYc0oEoM9voTuYUQArVFkJRjlMEd9JgT8llzWvgXo1UzCJnJPd3PRJsJrWR03ro_6sD8DP_jXkBv27LwCQGfjiWjveIaU-LC8vZ9HfZBHT2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510259858</pqid></control><display><type>article</type><title>Tumour angiogenesis normalized by myo‐inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>El Hafny‐Rahbi, Bouchra ; Brodaczewska, Klaudia ; Collet, Guillaume ; Majewska, Aleksandra ; Klimkiewicz, Krzysztof ; Delalande, Anthony ; Grillon, Catherine ; Kieda, Claudine</creator><creatorcontrib>El Hafny‐Rahbi, Bouchra ; Brodaczewska, Klaudia ; Collet, Guillaume ; Majewska, Aleksandra ; Klimkiewicz, Krzysztof ; Delalande, Anthony ; Grillon, Catherine ; Kieda, Claudine</creatorcontrib><description>Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo‐inositol‐trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2) and stabilizes vessel normalization through activation of endothelial Phosphatase‐and‐Tensin‐homologue (PTEN). Here, we show that the tumour reduction due to the ITPP‐induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage‐type proportions, increased proportions of NK and CD8+T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+NK cells to tumour cells is due to their adhesion to PD‐L1+/PD‐L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD‐L1/PD‐L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA‐4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.16399</identifier><identifier>PMID: 33624446</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Angiogenesis ; Antitumor activity ; Bone marrow ; cancer ; Cancer therapies ; CD45 antigen ; CD8 antigen ; Cell culture ; Chemokines ; Cooperation ; Cytotoxicity ; Endothelial cells ; Ethics ; Experiments ; Helper cells ; Hypoxia ; immune response ; Immunological tolerance ; Immunosuppression ; Inositol ; Life Sciences ; Lymphocytes T ; Macrophages ; Melanoma ; microenvironment ; Microenvironments ; myo‐inositol trispyrophosphate ; Original ; oxygen partial pressure (pO2) ; Oxygen tension ; PD-1 protein ; PD-L1 protein ; Phenotypes ; PTEN protein ; Recruitment ; Tensin ; Tumor microenvironment ; Tumors ; vessel normalization</subject><ispartof>Journal of cellular and molecular medicine, 2021-04, Vol.25 (7), p.3284-3299</ispartof><rights>2021 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943</citedby><cites>FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943</cites><orcidid>0000-0002-7573-029X ; 0000-0001-5019-7831 ; 0000-0001-8280-4616 ; 0000-0003-1271-4679 ; 0000-0003-2374-3600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2510259858/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2510259858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33624446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03391075$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Hafny‐Rahbi, Bouchra</creatorcontrib><creatorcontrib>Brodaczewska, Klaudia</creatorcontrib><creatorcontrib>Collet, Guillaume</creatorcontrib><creatorcontrib>Majewska, Aleksandra</creatorcontrib><creatorcontrib>Klimkiewicz, Krzysztof</creatorcontrib><creatorcontrib>Delalande, Anthony</creatorcontrib><creatorcontrib>Grillon, Catherine</creatorcontrib><creatorcontrib>Kieda, Claudine</creatorcontrib><title>Tumour angiogenesis normalized by myo‐inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo‐inositol‐trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2) and stabilizes vessel normalization through activation of endothelial Phosphatase‐and‐Tensin‐homologue (PTEN). Here, we show that the tumour reduction due to the ITPP‐induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage‐type proportions, increased proportions of NK and CD8+T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+NK cells to tumour cells is due to their adhesion to PD‐L1+/PD‐L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD‐L1/PD‐L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA‐4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.</description><subject>Angiogenesis</subject><subject>Antitumor activity</subject><subject>Bone marrow</subject><subject>cancer</subject><subject>Cancer therapies</subject><subject>CD45 antigen</subject><subject>CD8 antigen</subject><subject>Cell culture</subject><subject>Chemokines</subject><subject>Cooperation</subject><subject>Cytotoxicity</subject><subject>Endothelial cells</subject><subject>Ethics</subject><subject>Experiments</subject><subject>Helper cells</subject><subject>Hypoxia</subject><subject>immune response</subject><subject>Immunological tolerance</subject><subject>Immunosuppression</subject><subject>Inositol</subject><subject>Life Sciences</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Melanoma</subject><subject>microenvironment</subject><subject>Microenvironments</subject><subject>myo‐inositol trispyrophosphate</subject><subject>Original</subject><subject>oxygen partial pressure (pO2)</subject><subject>Oxygen tension</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Phenotypes</subject><subject>PTEN protein</subject><subject>Recruitment</subject><subject>Tensin</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><subject>vessel normalization</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9ksFu1DAQhiMEoqVw4QGQJS6AtMWO7Ti-VKpWQEFbcSlny_V6N17FdrCThXDiETjwhDwJE7JU0EN9seX55p_RP1MUTwk-JXBe74z3p6SiUt4rjgmvywWTlN0_vElN66PiUc47jGlFqHxYHFFalYyx6rj4eTX4OCSkw9bFrQ02u4xCTF637ptdo-sR-TH--v7DhZhdH1vUJ5e7McWuiblrdG-Rblu7d_DKqBm7-NVp5ALqG4u8MynasHcpBm9DD2XWqEvRxwnWoXc9lE_IeT8Ei5LNXQzZPi4ebHSb7ZPDfVJ8evvmanmxWH189355vloYTrBcaG5MvTalEARzaSsmiaykNpJQLSghQlTMSIhXkpZUS2EYJIgNx0SwWjJ6UpzNut1w7e3aQIdJt6pLzus0qqid-j8SXKO2ca9qTME-AgIvZ4HmVtrF-UpNf5hSSbDg-4l9cSiW4ufB5l55l41tWx1sHLIqYWgYc0oEoM9voTuYUQArVFkJRjlMEd9JgT8llzWvgXo1UzCJnJPd3PRJsJrWR03ro_6sD8DP_jXkBv27LwCQGfjiWjveIaU-LC8vZ9HfZBHT2w</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>El Hafny‐Rahbi, Bouchra</creator><creator>Brodaczewska, Klaudia</creator><creator>Collet, Guillaume</creator><creator>Majewska, Aleksandra</creator><creator>Klimkiewicz, Krzysztof</creator><creator>Delalande, Anthony</creator><creator>Grillon, Catherine</creator><creator>Kieda, Claudine</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7573-029X</orcidid><orcidid>https://orcid.org/0000-0001-5019-7831</orcidid><orcidid>https://orcid.org/0000-0001-8280-4616</orcidid><orcidid>https://orcid.org/0000-0003-1271-4679</orcidid><orcidid>https://orcid.org/0000-0003-2374-3600</orcidid></search><sort><creationdate>202104</creationdate><title>Tumour angiogenesis normalized by myo‐inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response</title><author>El Hafny‐Rahbi, Bouchra ; Brodaczewska, Klaudia ; Collet, Guillaume ; Majewska, Aleksandra ; Klimkiewicz, Krzysztof ; Delalande, Anthony ; Grillon, Catherine ; Kieda, Claudine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Antitumor activity</topic><topic>Bone marrow</topic><topic>cancer</topic><topic>Cancer therapies</topic><topic>CD45 antigen</topic><topic>CD8 antigen</topic><topic>Cell culture</topic><topic>Chemokines</topic><topic>Cooperation</topic><topic>Cytotoxicity</topic><topic>Endothelial cells</topic><topic>Ethics</topic><topic>Experiments</topic><topic>Helper cells</topic><topic>Hypoxia</topic><topic>immune response</topic><topic>Immunological tolerance</topic><topic>Immunosuppression</topic><topic>Inositol</topic><topic>Life Sciences</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Melanoma</topic><topic>microenvironment</topic><topic>Microenvironments</topic><topic>myo‐inositol trispyrophosphate</topic><topic>Original</topic><topic>oxygen partial pressure (pO2)</topic><topic>Oxygen tension</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Phenotypes</topic><topic>PTEN protein</topic><topic>Recruitment</topic><topic>Tensin</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><topic>vessel normalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hafny‐Rahbi, Bouchra</creatorcontrib><creatorcontrib>Brodaczewska, Klaudia</creatorcontrib><creatorcontrib>Collet, Guillaume</creatorcontrib><creatorcontrib>Majewska, Aleksandra</creatorcontrib><creatorcontrib>Klimkiewicz, Krzysztof</creatorcontrib><creatorcontrib>Delalande, Anthony</creatorcontrib><creatorcontrib>Grillon, Catherine</creatorcontrib><creatorcontrib>Kieda, Claudine</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hafny‐Rahbi, Bouchra</au><au>Brodaczewska, Klaudia</au><au>Collet, Guillaume</au><au>Majewska, Aleksandra</au><au>Klimkiewicz, Krzysztof</au><au>Delalande, Anthony</au><au>Grillon, Catherine</au><au>Kieda, Claudine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumour angiogenesis normalized by myo‐inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2021-04</date><risdate>2021</risdate><volume>25</volume><issue>7</issue><spage>3284</spage><epage>3299</epage><pages>3284-3299</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo‐inositol‐trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2) and stabilizes vessel normalization through activation of endothelial Phosphatase‐and‐Tensin‐homologue (PTEN). Here, we show that the tumour reduction due to the ITPP‐induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage‐type proportions, increased proportions of NK and CD8+T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+NK cells to tumour cells is due to their adhesion to PD‐L1+/PD‐L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD‐L1/PD‐L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA‐4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33624446</pmid><doi>10.1111/jcmm.16399</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7573-029X</orcidid><orcidid>https://orcid.org/0000-0001-5019-7831</orcidid><orcidid>https://orcid.org/0000-0001-8280-4616</orcidid><orcidid>https://orcid.org/0000-0003-1271-4679</orcidid><orcidid>https://orcid.org/0000-0003-2374-3600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2021-04, Vol.25 (7), p.3284-3299
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034441
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central
subjects Angiogenesis
Antitumor activity
Bone marrow
cancer
Cancer therapies
CD45 antigen
CD8 antigen
Cell culture
Chemokines
Cooperation
Cytotoxicity
Endothelial cells
Ethics
Experiments
Helper cells
Hypoxia
immune response
Immunological tolerance
Immunosuppression
Inositol
Life Sciences
Lymphocytes T
Macrophages
Melanoma
microenvironment
Microenvironments
myo‐inositol trispyrophosphate
Original
oxygen partial pressure (pO2)
Oxygen tension
PD-1 protein
PD-L1 protein
Phenotypes
PTEN protein
Recruitment
Tensin
Tumor microenvironment
Tumors
vessel normalization
title Tumour angiogenesis normalized by myo‐inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumour%20angiogenesis%20normalized%20by%20myo%E2%80%90inositol%20trispyrophosphate%20alleviates%20hypoxia%20in%20the%20microenvironment%20and%20promotes%20antitumor%20immune%20response&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=El%20Hafny%E2%80%90Rahbi,%20Bouchra&rft.date=2021-04&rft.volume=25&rft.issue=7&rft.spage=3284&rft.epage=3299&rft.pages=3284-3299&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.16399&rft_dat=%3Cproquest_pubme%3E2493005317%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5109-a5cc8dc2771059e6491969ac913a73117764c9c2769323a97c4cc87f501748943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510259858&rft_id=info:pmid/33624446&rfr_iscdi=true