Loading…
Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism
In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty...
Saved in:
Published in: | International journal of molecular sciences 2021-04, Vol.22 (7), p.3799 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3 |
container_end_page | |
container_issue | 7 |
container_start_page | 3799 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Tucci, Sara Alatibi, Khaled Ibrahim Wehbe, Zeinab |
description | In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD
) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis. |
doi_str_mv | 10.3390/ijms22073799 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8038842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548692529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</originalsourceid><addsrcrecordid>eNpd0U1PxCAQBmBiNH6s3jybJl48uDpAW8rFZKOumqzxomdCgbpsaFFgjf57MX6tnphknpkweRHax3BCKYdTu-gjIcAo43wNbeOSkDFAzdZX6i20E-MCgFBS8U20lQcxq6HZRnrikglGF7cmydY7q4qpM6-2tc6mt8IOxc0wN8GmP-TCRiOjiYXvilubvJr7QQcrXTGVKY9NlP3lsd9FG5100ex9vSP0ML28P78ez-6ubs4ns7EqMUnjhtVGtx3hVanaSoHiEiqpoeJ1panuao01V4zWjNLcwLxtDUhZMlZiACXpCJ197n1atr3RygwpSCeegu1leBNeWvG3M9i5ePQvogHaNCXJC46-FgT_vDQxid5GZZyTg_HLKEhFoKkxL6tMD__RhV-GIZ-XVdnUPFue1fGnUsHHGEz38xkM4iM-sRpf5gerB_zg77zoO566l3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548692529</pqid></control><display><type>article</type><title>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Tucci, Sara ; Alatibi, Khaled Ibrahim ; Wehbe, Zeinab</creator><creatorcontrib>Tucci, Sara ; Alatibi, Khaled Ibrahim ; Wehbe, Zeinab</creatorcontrib><description>In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD
) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22073799</identifier><identifier>PMID: 33917608</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acyl-CoA dehydrogenase ; Adenosine triphosphate ; Animals ; Bacterial Proteins - metabolism ; Biosynthesis ; Coenzyme A Ligases - deficiency ; Coenzyme A Ligases - metabolism ; Congenital Bone Marrow Failure Syndromes - genetics ; Congenital Bone Marrow Failure Syndromes - metabolism ; Congenital Bone Marrow Failure Syndromes - pathology ; Dehydrogenases ; Disease ; Energy ; Energy balance ; Enzymes ; Fatty acids ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Flexibility ; Glycolysis ; Homeostasis ; Humans ; Lipid Metabolism, Inborn Errors - genetics ; Lipid Metabolism, Inborn Errors - metabolism ; Lipid Metabolism, Inborn Errors - pathology ; Lipogenesis ; Mammals ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic Diseases - pathology ; Metabolic disorders ; Metabolites ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Diseases - genetics ; Mitochondrial Diseases - metabolism ; Mitochondrial Diseases - pathology ; Muscles ; Muscular Diseases - genetics ; Muscular Diseases - metabolism ; Muscular Diseases - pathology ; Musculoskeletal system ; Mutation ; Oxidation ; Oxidation rate ; Proteins ; Review ; Skeletal muscle ; Triglycerides</subject><ispartof>International journal of molecular sciences, 2021-04, Vol.22 (7), p.3799</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</citedby><cites>FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</cites><orcidid>0000-0002-2124-0092 ; 0000-0003-3851-4843 ; 0000-0002-7253-2765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548692529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548692529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33917608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tucci, Sara</creatorcontrib><creatorcontrib>Alatibi, Khaled Ibrahim</creatorcontrib><creatorcontrib>Wehbe, Zeinab</creatorcontrib><title>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD
) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.</description><subject>Acyl-CoA dehydrogenase</subject><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>Coenzyme A Ligases - deficiency</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>Congenital Bone Marrow Failure Syndromes - genetics</subject><subject>Congenital Bone Marrow Failure Syndromes - metabolism</subject><subject>Congenital Bone Marrow Failure Syndromes - pathology</subject><subject>Dehydrogenases</subject><subject>Disease</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Flexibility</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lipid Metabolism, Inborn Errors - genetics</subject><subject>Lipid Metabolism, Inborn Errors - metabolism</subject><subject>Lipid Metabolism, Inborn Errors - pathology</subject><subject>Lipogenesis</subject><subject>Mammals</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic Diseases - pathology</subject><subject>Metabolic disorders</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Diseases - metabolism</subject><subject>Mitochondrial Diseases - pathology</subject><subject>Muscles</subject><subject>Muscular Diseases - genetics</subject><subject>Muscular Diseases - metabolism</subject><subject>Muscular Diseases - pathology</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Proteins</subject><subject>Review</subject><subject>Skeletal muscle</subject><subject>Triglycerides</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpd0U1PxCAQBmBiNH6s3jybJl48uDpAW8rFZKOumqzxomdCgbpsaFFgjf57MX6tnphknpkweRHax3BCKYdTu-gjIcAo43wNbeOSkDFAzdZX6i20E-MCgFBS8U20lQcxq6HZRnrikglGF7cmydY7q4qpM6-2tc6mt8IOxc0wN8GmP-TCRiOjiYXvilubvJr7QQcrXTGVKY9NlP3lsd9FG5100ex9vSP0ML28P78ez-6ubs4ns7EqMUnjhtVGtx3hVanaSoHiEiqpoeJ1panuao01V4zWjNLcwLxtDUhZMlZiACXpCJ197n1atr3RygwpSCeegu1leBNeWvG3M9i5ePQvogHaNCXJC46-FgT_vDQxid5GZZyTg_HLKEhFoKkxL6tMD__RhV-GIZ-XVdnUPFue1fGnUsHHGEz38xkM4iM-sRpf5gerB_zg77zoO566l3I</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Tucci, Sara</creator><creator>Alatibi, Khaled Ibrahim</creator><creator>Wehbe, Zeinab</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2124-0092</orcidid><orcidid>https://orcid.org/0000-0003-3851-4843</orcidid><orcidid>https://orcid.org/0000-0002-7253-2765</orcidid></search><sort><creationdate>20210406</creationdate><title>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</title><author>Tucci, Sara ; Alatibi, Khaled Ibrahim ; Wehbe, Zeinab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acyl-CoA dehydrogenase</topic><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>Coenzyme A Ligases - deficiency</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>Congenital Bone Marrow Failure Syndromes - genetics</topic><topic>Congenital Bone Marrow Failure Syndromes - metabolism</topic><topic>Congenital Bone Marrow Failure Syndromes - pathology</topic><topic>Dehydrogenases</topic><topic>Disease</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Flexibility</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lipid Metabolism, Inborn Errors - genetics</topic><topic>Lipid Metabolism, Inborn Errors - metabolism</topic><topic>Lipid Metabolism, Inborn Errors - pathology</topic><topic>Lipogenesis</topic><topic>Mammals</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic Diseases - pathology</topic><topic>Metabolic disorders</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Diseases - metabolism</topic><topic>Mitochondrial Diseases - pathology</topic><topic>Muscles</topic><topic>Muscular Diseases - genetics</topic><topic>Muscular Diseases - metabolism</topic><topic>Muscular Diseases - pathology</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Proteins</topic><topic>Review</topic><topic>Skeletal muscle</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucci, Sara</creatorcontrib><creatorcontrib>Alatibi, Khaled Ibrahim</creatorcontrib><creatorcontrib>Wehbe, Zeinab</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucci, Sara</au><au>Alatibi, Khaled Ibrahim</au><au>Wehbe, Zeinab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><spage>3799</spage><pages>3799-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD
) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33917608</pmid><doi>10.3390/ijms22073799</doi><orcidid>https://orcid.org/0000-0002-2124-0092</orcidid><orcidid>https://orcid.org/0000-0003-3851-4843</orcidid><orcidid>https://orcid.org/0000-0002-7253-2765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-04, Vol.22 (7), p.3799 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8038842 |
source | PubMed (Medline); Publicly Available Content (ProQuest) |
subjects | Acyl-CoA dehydrogenase Adenosine triphosphate Animals Bacterial Proteins - metabolism Biosynthesis Coenzyme A Ligases - deficiency Coenzyme A Ligases - metabolism Congenital Bone Marrow Failure Syndromes - genetics Congenital Bone Marrow Failure Syndromes - metabolism Congenital Bone Marrow Failure Syndromes - pathology Dehydrogenases Disease Energy Energy balance Enzymes Fatty acids Fatty Acids - genetics Fatty Acids - metabolism Flexibility Glycolysis Homeostasis Humans Lipid Metabolism, Inborn Errors - genetics Lipid Metabolism, Inborn Errors - metabolism Lipid Metabolism, Inborn Errors - pathology Lipogenesis Mammals Metabolic Diseases - genetics Metabolic Diseases - metabolism Metabolic Diseases - pathology Metabolic disorders Metabolites Mice Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology Mitochondrial Diseases - genetics Mitochondrial Diseases - metabolism Mitochondrial Diseases - pathology Muscles Muscular Diseases - genetics Muscular Diseases - metabolism Muscular Diseases - pathology Musculoskeletal system Mutation Oxidation Oxidation rate Proteins Review Skeletal muscle Triglycerides |
title | Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20Metabolic%20Flexibility%20in%20Inherited%20Metabolic%20Diseases%20of%20Mitochondrial%20Fatty%20Acid%20Metabolism&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Tucci,%20Sara&rft.date=2021-04-06&rft.volume=22&rft.issue=7&rft.spage=3799&rft.pages=3799-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22073799&rft_dat=%3Cproquest_pubme%3E2548692529%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548692529&rft_id=info:pmid/33917608&rfr_iscdi=true |