Loading…

Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism

In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-04, Vol.22 (7), p.3799
Main Authors: Tucci, Sara, Alatibi, Khaled Ibrahim, Wehbe, Zeinab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3
cites cdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3
container_end_page
container_issue 7
container_start_page 3799
container_title International journal of molecular sciences
container_volume 22
creator Tucci, Sara
Alatibi, Khaled Ibrahim
Wehbe, Zeinab
description In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD ) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.
doi_str_mv 10.3390/ijms22073799
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8038842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548692529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</originalsourceid><addsrcrecordid>eNpd0U1PxCAQBmBiNH6s3jybJl48uDpAW8rFZKOumqzxomdCgbpsaFFgjf57MX6tnphknpkweRHax3BCKYdTu-gjIcAo43wNbeOSkDFAzdZX6i20E-MCgFBS8U20lQcxq6HZRnrikglGF7cmydY7q4qpM6-2tc6mt8IOxc0wN8GmP-TCRiOjiYXvilubvJr7QQcrXTGVKY9NlP3lsd9FG5100ex9vSP0ML28P78ez-6ubs4ns7EqMUnjhtVGtx3hVanaSoHiEiqpoeJ1panuao01V4zWjNLcwLxtDUhZMlZiACXpCJ197n1atr3RygwpSCeegu1leBNeWvG3M9i5ePQvogHaNCXJC46-FgT_vDQxid5GZZyTg_HLKEhFoKkxL6tMD__RhV-GIZ-XVdnUPFue1fGnUsHHGEz38xkM4iM-sRpf5gerB_zg77zoO566l3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548692529</pqid></control><display><type>article</type><title>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Tucci, Sara ; Alatibi, Khaled Ibrahim ; Wehbe, Zeinab</creator><creatorcontrib>Tucci, Sara ; Alatibi, Khaled Ibrahim ; Wehbe, Zeinab</creatorcontrib><description>In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD ) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22073799</identifier><identifier>PMID: 33917608</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acyl-CoA dehydrogenase ; Adenosine triphosphate ; Animals ; Bacterial Proteins - metabolism ; Biosynthesis ; Coenzyme A Ligases - deficiency ; Coenzyme A Ligases - metabolism ; Congenital Bone Marrow Failure Syndromes - genetics ; Congenital Bone Marrow Failure Syndromes - metabolism ; Congenital Bone Marrow Failure Syndromes - pathology ; Dehydrogenases ; Disease ; Energy ; Energy balance ; Enzymes ; Fatty acids ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Flexibility ; Glycolysis ; Homeostasis ; Humans ; Lipid Metabolism, Inborn Errors - genetics ; Lipid Metabolism, Inborn Errors - metabolism ; Lipid Metabolism, Inborn Errors - pathology ; Lipogenesis ; Mammals ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic Diseases - pathology ; Metabolic disorders ; Metabolites ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Diseases - genetics ; Mitochondrial Diseases - metabolism ; Mitochondrial Diseases - pathology ; Muscles ; Muscular Diseases - genetics ; Muscular Diseases - metabolism ; Muscular Diseases - pathology ; Musculoskeletal system ; Mutation ; Oxidation ; Oxidation rate ; Proteins ; Review ; Skeletal muscle ; Triglycerides</subject><ispartof>International journal of molecular sciences, 2021-04, Vol.22 (7), p.3799</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</citedby><cites>FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</cites><orcidid>0000-0002-2124-0092 ; 0000-0003-3851-4843 ; 0000-0002-7253-2765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548692529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548692529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33917608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tucci, Sara</creatorcontrib><creatorcontrib>Alatibi, Khaled Ibrahim</creatorcontrib><creatorcontrib>Wehbe, Zeinab</creatorcontrib><title>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD ) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.</description><subject>Acyl-CoA dehydrogenase</subject><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>Coenzyme A Ligases - deficiency</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>Congenital Bone Marrow Failure Syndromes - genetics</subject><subject>Congenital Bone Marrow Failure Syndromes - metabolism</subject><subject>Congenital Bone Marrow Failure Syndromes - pathology</subject><subject>Dehydrogenases</subject><subject>Disease</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Flexibility</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lipid Metabolism, Inborn Errors - genetics</subject><subject>Lipid Metabolism, Inborn Errors - metabolism</subject><subject>Lipid Metabolism, Inborn Errors - pathology</subject><subject>Lipogenesis</subject><subject>Mammals</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic Diseases - pathology</subject><subject>Metabolic disorders</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Diseases - metabolism</subject><subject>Mitochondrial Diseases - pathology</subject><subject>Muscles</subject><subject>Muscular Diseases - genetics</subject><subject>Muscular Diseases - metabolism</subject><subject>Muscular Diseases - pathology</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Proteins</subject><subject>Review</subject><subject>Skeletal muscle</subject><subject>Triglycerides</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpd0U1PxCAQBmBiNH6s3jybJl48uDpAW8rFZKOumqzxomdCgbpsaFFgjf57MX6tnphknpkweRHax3BCKYdTu-gjIcAo43wNbeOSkDFAzdZX6i20E-MCgFBS8U20lQcxq6HZRnrikglGF7cmydY7q4qpM6-2tc6mt8IOxc0wN8GmP-TCRiOjiYXvilubvJr7QQcrXTGVKY9NlP3lsd9FG5100ex9vSP0ML28P78ez-6ubs4ns7EqMUnjhtVGtx3hVanaSoHiEiqpoeJ1panuao01V4zWjNLcwLxtDUhZMlZiACXpCJ197n1atr3RygwpSCeegu1leBNeWvG3M9i5ePQvogHaNCXJC46-FgT_vDQxid5GZZyTg_HLKEhFoKkxL6tMD__RhV-GIZ-XVdnUPFue1fGnUsHHGEz38xkM4iM-sRpf5gerB_zg77zoO566l3I</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Tucci, Sara</creator><creator>Alatibi, Khaled Ibrahim</creator><creator>Wehbe, Zeinab</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2124-0092</orcidid><orcidid>https://orcid.org/0000-0003-3851-4843</orcidid><orcidid>https://orcid.org/0000-0002-7253-2765</orcidid></search><sort><creationdate>20210406</creationdate><title>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</title><author>Tucci, Sara ; Alatibi, Khaled Ibrahim ; Wehbe, Zeinab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acyl-CoA dehydrogenase</topic><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>Coenzyme A Ligases - deficiency</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>Congenital Bone Marrow Failure Syndromes - genetics</topic><topic>Congenital Bone Marrow Failure Syndromes - metabolism</topic><topic>Congenital Bone Marrow Failure Syndromes - pathology</topic><topic>Dehydrogenases</topic><topic>Disease</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Flexibility</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lipid Metabolism, Inborn Errors - genetics</topic><topic>Lipid Metabolism, Inborn Errors - metabolism</topic><topic>Lipid Metabolism, Inborn Errors - pathology</topic><topic>Lipogenesis</topic><topic>Mammals</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic Diseases - pathology</topic><topic>Metabolic disorders</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Diseases - metabolism</topic><topic>Mitochondrial Diseases - pathology</topic><topic>Muscles</topic><topic>Muscular Diseases - genetics</topic><topic>Muscular Diseases - metabolism</topic><topic>Muscular Diseases - pathology</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Proteins</topic><topic>Review</topic><topic>Skeletal muscle</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucci, Sara</creatorcontrib><creatorcontrib>Alatibi, Khaled Ibrahim</creatorcontrib><creatorcontrib>Wehbe, Zeinab</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucci, Sara</au><au>Alatibi, Khaled Ibrahim</au><au>Wehbe, Zeinab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><spage>3799</spage><pages>3799-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD ) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33917608</pmid><doi>10.3390/ijms22073799</doi><orcidid>https://orcid.org/0000-0002-2124-0092</orcidid><orcidid>https://orcid.org/0000-0003-3851-4843</orcidid><orcidid>https://orcid.org/0000-0002-7253-2765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-04, Vol.22 (7), p.3799
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8038842
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Acyl-CoA dehydrogenase
Adenosine triphosphate
Animals
Bacterial Proteins - metabolism
Biosynthesis
Coenzyme A Ligases - deficiency
Coenzyme A Ligases - metabolism
Congenital Bone Marrow Failure Syndromes - genetics
Congenital Bone Marrow Failure Syndromes - metabolism
Congenital Bone Marrow Failure Syndromes - pathology
Dehydrogenases
Disease
Energy
Energy balance
Enzymes
Fatty acids
Fatty Acids - genetics
Fatty Acids - metabolism
Flexibility
Glycolysis
Homeostasis
Humans
Lipid Metabolism, Inborn Errors - genetics
Lipid Metabolism, Inborn Errors - metabolism
Lipid Metabolism, Inborn Errors - pathology
Lipogenesis
Mammals
Metabolic Diseases - genetics
Metabolic Diseases - metabolism
Metabolic Diseases - pathology
Metabolic disorders
Metabolites
Mice
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Diseases - genetics
Mitochondrial Diseases - metabolism
Mitochondrial Diseases - pathology
Muscles
Muscular Diseases - genetics
Muscular Diseases - metabolism
Muscular Diseases - pathology
Musculoskeletal system
Mutation
Oxidation
Oxidation rate
Proteins
Review
Skeletal muscle
Triglycerides
title Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20Metabolic%20Flexibility%20in%20Inherited%20Metabolic%20Diseases%20of%20Mitochondrial%20Fatty%20Acid%20Metabolism&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Tucci,%20Sara&rft.date=2021-04-06&rft.volume=22&rft.issue=7&rft.spage=3799&rft.pages=3799-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22073799&rft_dat=%3Cproquest_pubme%3E2548692529%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-876edbf2954cb5c0c9a05ad05965d3df6d1d9c73673305a19bbe0aa4774100ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548692529&rft_id=info:pmid/33917608&rfr_iscdi=true