Loading…

The Dopaminergic Neuronal System Regulates the Inflammatory Status of Mouse Lacrimal Glands in Dry Eye Disease

Comparison of the parasympathetic and sympathetic neurons, including the dopaminergic neural system, in dry eye (DE)-induced pathophysiology has not been elucidated well. This study investigated the presence of dopamine receptors (DRs) and their functional roles in the lacrimal glands (LGs) of DE-in...

Full description

Saved in:
Bibliographic Details
Published in:Investigative ophthalmology & visual science 2021-04, Vol.62 (4), p.14-14
Main Authors: Ji, Yong Woo, Kang, Hyun Goo, Song, Jong Suk, Jun, Ji Won, Han, Kyusun, Kim, Tae-Im, Seo, Kyoung Yul, Lee, Hyung Keun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Comparison of the parasympathetic and sympathetic neurons, including the dopaminergic neural system, in dry eye (DE)-induced pathophysiology has not been elucidated well. This study investigated the presence of dopamine receptors (DRs) and their functional roles in the lacrimal glands (LGs) of DE-induced mice. After DE was induced in B6 mice for 2 weeks, the expression of tyrosine hydroxylase (TH), dopamine, and DRs (DR1, DR2, etc.) in the LGs and corneas were measured by quantitative RT-PCR, immunoblot, and ELISA. Using flow cytometry and ELISA, immune cell infiltration and inflammatory cytokine expression were determined in DE-induced LGs with or without DR blockers, SCH-23390 (DR1i), or melperone (DR2i). Corneal erosion scores were also investigated. The mRNA and protein levels of TH significantly increased in DE-induced LGs. The dopamine concentration of LGs was 9.51 pmol in DE (versus naive: 1.39 pmol; P < 0.001). Both DR1 and DR2 mRNA expression were significantly enhanced in desiccating stress compared with those in naive (3.7- and 2.1-fold, P < 0.001). Interestingly, DR1 and DR2 immunostaining patterns stained independently in DE-induced LGs. CD3+ and CD19+ cell infiltration was significantly increased by DR2i (P < 0.001) but not by DR1i. Furthermore, IFN-γ, IL-17, and TNF-α were significantly upregulated by DR2i compared with the blow-only condition. The severity of corneal erosion and inflammation was also aggravated by DR2i. Upregulation of DR1 and DR2 was observed in DE-induced mouse LGs. As the inflammatory conditions are aggravated by the inhibition of DRs, especially DR2, their activity may be an important factor preserving ocular surface homeostasis.
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.62.4.14