Loading…
Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes
When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation be...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (14), p.1-8 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203 |
container_end_page | 8 |
container_issue | 14 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Palacios-Flores, Kim García-Sotelo, Jair Castillo, Alejandra Uribe, Carina Morales, Lucía Boege, Margareta Dávila, Guillermo Flores, Margarita Palacios, Rafael |
description | When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly. |
doi_str_mv | 10.1073/pnas.2025192118 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27039707</jstor_id><sourcerecordid>27039707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</originalsourceid><addsrcrecordid>eNpdkc1PAjEQxRujUUTPnjQkXrgszPSDdi8mhiiaYPSg56ZburAEdrHdNeG_twjix2kmmd-8zJtHyAVCD0Gy_qo0oUeBCkwpojogLYQUkwFP4ZC0AKhMFKf8hJyGMAeAVCg4JieMSSY5ly3SfXE-d7buPJnazjojV1bLwnbGppwEa1auE2pvajddn5Gj3CyCO9_VNnm7v3sdPiTj59Hj8HacWM5ZnWQ5ZyK2A2EnaBGUzUSe8Uyh4NKgkIiZUpRLmCDmKpU5FSqLtHVcWAqsTW62uqsmW7qJdWU8YKFXvlgav9aVKfTfSVnM9LT60Ao4KEyjQHcn4Kv3xoVaL4tg3WJhSlc1QVMBbMCokCqi1__QedX4Mtr7orjgDESk-lvK-ioE7_L9MQh6k4LepKB_UogbV7897Pnvt0fgcgvMQ135_ZxKYKmMip8Cy4se</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503454305</pqid></control><display><type>article</type><title>Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Palacios-Flores, Kim ; García-Sotelo, Jair ; Castillo, Alejandra ; Uribe, Carina ; Morales, Lucía ; Boege, Margareta ; Dávila, Guillermo ; Flores, Margarita ; Palacios, Rafael</creator><creatorcontrib>Palacios-Flores, Kim ; García-Sotelo, Jair ; Castillo, Alejandra ; Uribe, Carina ; Morales, Lucía ; Boege, Margareta ; Dávila, Guillermo ; Flores, Margarita ; Palacios, Rafael</creatorcontrib><description>When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2025192118</identifier><identifier>PMID: 33737447</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Archaea ; Biological Sciences ; Coliforms ; COVID-19 ; Customization ; E coli ; Escherichia coli ; Fungi ; Genetic Variation ; Genetics ; Genome, Microbial ; Genomes ; Genomics ; Genomics - methods ; Microorganisms ; Mutation ; Mutation Accumulation ; Proof of Concept Study ; Saccharomyces cerevisiae - genetics ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (14), p.1-8</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 6, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</citedby><cites>FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</cites><orcidid>0000-0003-0310-094X ; 0000-0002-4924-8504 ; 0000-0003-4581-9549 ; 0000-0002-9511-5067 ; 0000-0002-2361-8618 ; 0000-0003-0078-9526 ; 0000-0002-9343-3133 ; 0000-0002-3308-2714 ; 0000-0002-9462-2737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27039707$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27039707$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33737447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacios-Flores, Kim</creatorcontrib><creatorcontrib>García-Sotelo, Jair</creatorcontrib><creatorcontrib>Castillo, Alejandra</creatorcontrib><creatorcontrib>Uribe, Carina</creatorcontrib><creatorcontrib>Morales, Lucía</creatorcontrib><creatorcontrib>Boege, Margareta</creatorcontrib><creatorcontrib>Dávila, Guillermo</creatorcontrib><creatorcontrib>Flores, Margarita</creatorcontrib><creatorcontrib>Palacios, Rafael</creatorcontrib><title>Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.</description><subject>Algorithms</subject><subject>Archaea</subject><subject>Biological Sciences</subject><subject>Coliforms</subject><subject>COVID-19</subject><subject>Customization</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fungi</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome, Microbial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Mutation Accumulation</subject><subject>Proof of Concept Study</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1PAjEQxRujUUTPnjQkXrgszPSDdi8mhiiaYPSg56ZburAEdrHdNeG_twjix2kmmd-8zJtHyAVCD0Gy_qo0oUeBCkwpojogLYQUkwFP4ZC0AKhMFKf8hJyGMAeAVCg4JieMSSY5ly3SfXE-d7buPJnazjojV1bLwnbGppwEa1auE2pvajddn5Gj3CyCO9_VNnm7v3sdPiTj59Hj8HacWM5ZnWQ5ZyK2A2EnaBGUzUSe8Uyh4NKgkIiZUpRLmCDmKpU5FSqLtHVcWAqsTW62uqsmW7qJdWU8YKFXvlgav9aVKfTfSVnM9LT60Ao4KEyjQHcn4Kv3xoVaL4tg3WJhSlc1QVMBbMCokCqi1__QedX4Mtr7orjgDESk-lvK-ioE7_L9MQh6k4LepKB_UogbV7897Pnvt0fgcgvMQ135_ZxKYKmMip8Cy4se</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Palacios-Flores, Kim</creator><creator>García-Sotelo, Jair</creator><creator>Castillo, Alejandra</creator><creator>Uribe, Carina</creator><creator>Morales, Lucía</creator><creator>Boege, Margareta</creator><creator>Dávila, Guillermo</creator><creator>Flores, Margarita</creator><creator>Palacios, Rafael</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0310-094X</orcidid><orcidid>https://orcid.org/0000-0002-4924-8504</orcidid><orcidid>https://orcid.org/0000-0003-4581-9549</orcidid><orcidid>https://orcid.org/0000-0002-9511-5067</orcidid><orcidid>https://orcid.org/0000-0002-2361-8618</orcidid><orcidid>https://orcid.org/0000-0003-0078-9526</orcidid><orcidid>https://orcid.org/0000-0002-9343-3133</orcidid><orcidid>https://orcid.org/0000-0002-3308-2714</orcidid><orcidid>https://orcid.org/0000-0002-9462-2737</orcidid></search><sort><creationdate>20210406</creationdate><title>Perfect Match Genomic Landscape strategy</title><author>Palacios-Flores, Kim ; García-Sotelo, Jair ; Castillo, Alejandra ; Uribe, Carina ; Morales, Lucía ; Boege, Margareta ; Dávila, Guillermo ; Flores, Margarita ; Palacios, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Archaea</topic><topic>Biological Sciences</topic><topic>Coliforms</topic><topic>COVID-19</topic><topic>Customization</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fungi</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome, Microbial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Mutation Accumulation</topic><topic>Proof of Concept Study</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Flores, Kim</creatorcontrib><creatorcontrib>García-Sotelo, Jair</creatorcontrib><creatorcontrib>Castillo, Alejandra</creatorcontrib><creatorcontrib>Uribe, Carina</creatorcontrib><creatorcontrib>Morales, Lucía</creatorcontrib><creatorcontrib>Boege, Margareta</creatorcontrib><creatorcontrib>Dávila, Guillermo</creatorcontrib><creatorcontrib>Flores, Margarita</creatorcontrib><creatorcontrib>Palacios, Rafael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Flores, Kim</au><au>García-Sotelo, Jair</au><au>Castillo, Alejandra</au><au>Uribe, Carina</au><au>Morales, Lucía</au><au>Boege, Margareta</au><au>Dávila, Guillermo</au><au>Flores, Margarita</au><au>Palacios, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>118</volume><issue>14</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33737447</pmid><doi>10.1073/pnas.2025192118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0310-094X</orcidid><orcidid>https://orcid.org/0000-0002-4924-8504</orcidid><orcidid>https://orcid.org/0000-0003-4581-9549</orcidid><orcidid>https://orcid.org/0000-0002-9511-5067</orcidid><orcidid>https://orcid.org/0000-0002-2361-8618</orcidid><orcidid>https://orcid.org/0000-0003-0078-9526</orcidid><orcidid>https://orcid.org/0000-0002-9343-3133</orcidid><orcidid>https://orcid.org/0000-0002-3308-2714</orcidid><orcidid>https://orcid.org/0000-0002-9462-2737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (14), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040819 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection【Remote access available】 |
subjects | Algorithms Archaea Biological Sciences Coliforms COVID-19 Customization E coli Escherichia coli Fungi Genetic Variation Genetics Genome, Microbial Genomes Genomics Genomics - methods Microorganisms Mutation Mutation Accumulation Proof of Concept Study Saccharomyces cerevisiae - genetics SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 Viral diseases Yeast |
title | Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perfect%20Match%20Genomic%20Landscape%20strategy:%20Refinement%20and%20customization%20of%20reference%20genomes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Palacios-Flores,%20Kim&rft.date=2021-04-06&rft.volume=118&rft.issue=14&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2025192118&rft_dat=%3Cjstor_pubme%3E27039707%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503454305&rft_id=info:pmid/33737447&rft_jstor_id=27039707&rfr_iscdi=true |