Loading…

Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes

When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation be...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (14), p.1-8
Main Authors: Palacios-Flores, Kim, García-Sotelo, Jair, Castillo, Alejandra, Uribe, Carina, Morales, Lucía, Boege, Margareta, Dávila, Guillermo, Flores, Margarita, Palacios, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203
cites cdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203
container_end_page 8
container_issue 14
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Palacios-Flores, Kim
García-Sotelo, Jair
Castillo, Alejandra
Uribe, Carina
Morales, Lucía
Boege, Margareta
Dávila, Guillermo
Flores, Margarita
Palacios, Rafael
description When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.
doi_str_mv 10.1073/pnas.2025192118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27039707</jstor_id><sourcerecordid>27039707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</originalsourceid><addsrcrecordid>eNpdkc1PAjEQxRujUUTPnjQkXrgszPSDdi8mhiiaYPSg56ZburAEdrHdNeG_twjix2kmmd-8zJtHyAVCD0Gy_qo0oUeBCkwpojogLYQUkwFP4ZC0AKhMFKf8hJyGMAeAVCg4JieMSSY5ly3SfXE-d7buPJnazjojV1bLwnbGppwEa1auE2pvajddn5Gj3CyCO9_VNnm7v3sdPiTj59Hj8HacWM5ZnWQ5ZyK2A2EnaBGUzUSe8Uyh4NKgkIiZUpRLmCDmKpU5FSqLtHVcWAqsTW62uqsmW7qJdWU8YKFXvlgav9aVKfTfSVnM9LT60Ao4KEyjQHcn4Kv3xoVaL4tg3WJhSlc1QVMBbMCokCqi1__QedX4Mtr7orjgDESk-lvK-ioE7_L9MQh6k4LepKB_UogbV7897Pnvt0fgcgvMQ135_ZxKYKmMip8Cy4se</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503454305</pqid></control><display><type>article</type><title>Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Palacios-Flores, Kim ; García-Sotelo, Jair ; Castillo, Alejandra ; Uribe, Carina ; Morales, Lucía ; Boege, Margareta ; Dávila, Guillermo ; Flores, Margarita ; Palacios, Rafael</creator><creatorcontrib>Palacios-Flores, Kim ; García-Sotelo, Jair ; Castillo, Alejandra ; Uribe, Carina ; Morales, Lucía ; Boege, Margareta ; Dávila, Guillermo ; Flores, Margarita ; Palacios, Rafael</creatorcontrib><description>When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2025192118</identifier><identifier>PMID: 33737447</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Archaea ; Biological Sciences ; Coliforms ; COVID-19 ; Customization ; E coli ; Escherichia coli ; Fungi ; Genetic Variation ; Genetics ; Genome, Microbial ; Genomes ; Genomics ; Genomics - methods ; Microorganisms ; Mutation ; Mutation Accumulation ; Proof of Concept Study ; Saccharomyces cerevisiae - genetics ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (14), p.1-8</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 6, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</citedby><cites>FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</cites><orcidid>0000-0003-0310-094X ; 0000-0002-4924-8504 ; 0000-0003-4581-9549 ; 0000-0002-9511-5067 ; 0000-0002-2361-8618 ; 0000-0003-0078-9526 ; 0000-0002-9343-3133 ; 0000-0002-3308-2714 ; 0000-0002-9462-2737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27039707$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27039707$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33737447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacios-Flores, Kim</creatorcontrib><creatorcontrib>García-Sotelo, Jair</creatorcontrib><creatorcontrib>Castillo, Alejandra</creatorcontrib><creatorcontrib>Uribe, Carina</creatorcontrib><creatorcontrib>Morales, Lucía</creatorcontrib><creatorcontrib>Boege, Margareta</creatorcontrib><creatorcontrib>Dávila, Guillermo</creatorcontrib><creatorcontrib>Flores, Margarita</creatorcontrib><creatorcontrib>Palacios, Rafael</creatorcontrib><title>Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.</description><subject>Algorithms</subject><subject>Archaea</subject><subject>Biological Sciences</subject><subject>Coliforms</subject><subject>COVID-19</subject><subject>Customization</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fungi</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome, Microbial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Mutation Accumulation</subject><subject>Proof of Concept Study</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1PAjEQxRujUUTPnjQkXrgszPSDdi8mhiiaYPSg56ZburAEdrHdNeG_twjix2kmmd-8zJtHyAVCD0Gy_qo0oUeBCkwpojogLYQUkwFP4ZC0AKhMFKf8hJyGMAeAVCg4JieMSSY5ly3SfXE-d7buPJnazjojV1bLwnbGppwEa1auE2pvajddn5Gj3CyCO9_VNnm7v3sdPiTj59Hj8HacWM5ZnWQ5ZyK2A2EnaBGUzUSe8Uyh4NKgkIiZUpRLmCDmKpU5FSqLtHVcWAqsTW62uqsmW7qJdWU8YKFXvlgav9aVKfTfSVnM9LT60Ao4KEyjQHcn4Kv3xoVaL4tg3WJhSlc1QVMBbMCokCqi1__QedX4Mtr7orjgDESk-lvK-ioE7_L9MQh6k4LepKB_UogbV7897Pnvt0fgcgvMQ135_ZxKYKmMip8Cy4se</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Palacios-Flores, Kim</creator><creator>García-Sotelo, Jair</creator><creator>Castillo, Alejandra</creator><creator>Uribe, Carina</creator><creator>Morales, Lucía</creator><creator>Boege, Margareta</creator><creator>Dávila, Guillermo</creator><creator>Flores, Margarita</creator><creator>Palacios, Rafael</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0310-094X</orcidid><orcidid>https://orcid.org/0000-0002-4924-8504</orcidid><orcidid>https://orcid.org/0000-0003-4581-9549</orcidid><orcidid>https://orcid.org/0000-0002-9511-5067</orcidid><orcidid>https://orcid.org/0000-0002-2361-8618</orcidid><orcidid>https://orcid.org/0000-0003-0078-9526</orcidid><orcidid>https://orcid.org/0000-0002-9343-3133</orcidid><orcidid>https://orcid.org/0000-0002-3308-2714</orcidid><orcidid>https://orcid.org/0000-0002-9462-2737</orcidid></search><sort><creationdate>20210406</creationdate><title>Perfect Match Genomic Landscape strategy</title><author>Palacios-Flores, Kim ; García-Sotelo, Jair ; Castillo, Alejandra ; Uribe, Carina ; Morales, Lucía ; Boege, Margareta ; Dávila, Guillermo ; Flores, Margarita ; Palacios, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Archaea</topic><topic>Biological Sciences</topic><topic>Coliforms</topic><topic>COVID-19</topic><topic>Customization</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fungi</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome, Microbial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Mutation Accumulation</topic><topic>Proof of Concept Study</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Flores, Kim</creatorcontrib><creatorcontrib>García-Sotelo, Jair</creatorcontrib><creatorcontrib>Castillo, Alejandra</creatorcontrib><creatorcontrib>Uribe, Carina</creatorcontrib><creatorcontrib>Morales, Lucía</creatorcontrib><creatorcontrib>Boege, Margareta</creatorcontrib><creatorcontrib>Dávila, Guillermo</creatorcontrib><creatorcontrib>Flores, Margarita</creatorcontrib><creatorcontrib>Palacios, Rafael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Flores, Kim</au><au>García-Sotelo, Jair</au><au>Castillo, Alejandra</au><au>Uribe, Carina</au><au>Morales, Lucía</au><au>Boege, Margareta</au><au>Dávila, Guillermo</au><au>Flores, Margarita</au><au>Palacios, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>118</volume><issue>14</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.. Genetics 208, 1631–1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients’ samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33737447</pmid><doi>10.1073/pnas.2025192118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0310-094X</orcidid><orcidid>https://orcid.org/0000-0002-4924-8504</orcidid><orcidid>https://orcid.org/0000-0003-4581-9549</orcidid><orcidid>https://orcid.org/0000-0002-9511-5067</orcidid><orcidid>https://orcid.org/0000-0002-2361-8618</orcidid><orcidid>https://orcid.org/0000-0003-0078-9526</orcidid><orcidid>https://orcid.org/0000-0002-9343-3133</orcidid><orcidid>https://orcid.org/0000-0002-3308-2714</orcidid><orcidid>https://orcid.org/0000-0002-9462-2737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (14), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040819
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects Algorithms
Archaea
Biological Sciences
Coliforms
COVID-19
Customization
E coli
Escherichia coli
Fungi
Genetic Variation
Genetics
Genome, Microbial
Genomes
Genomics
Genomics - methods
Microorganisms
Mutation
Mutation Accumulation
Proof of Concept Study
Saccharomyces cerevisiae - genetics
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Yeast
title Perfect Match Genomic Landscape strategy: Refinement and customization of reference genomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perfect%20Match%20Genomic%20Landscape%20strategy:%20Refinement%20and%20customization%20of%20reference%20genomes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Palacios-Flores,%20Kim&rft.date=2021-04-06&rft.volume=118&rft.issue=14&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2025192118&rft_dat=%3Cjstor_pubme%3E27039707%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-bf435c4465cd1c108cb5fb4b81547a15711b882470d11f897f258b65cce45c203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503454305&rft_id=info:pmid/33737447&rft_jstor_id=27039707&rfr_iscdi=true