Loading…
A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I
Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation...
Saved in:
Published in: | The Journal of biological chemistry 2021-01, Vol.296, p.100474-100474, Article 100474 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3 |
container_end_page | 100474 |
container_issue | |
container_start_page | 100474 |
container_title | The Journal of biological chemistry |
container_volume | 296 |
creator | Hameedi, Mikhail A. Grba, Daniel N. Richardson, Katherine H. Jones, Andrew J.Y. Song, Wei Roessler, Maxie M. Wright, John J. Hirst, Judy |
description | Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron–sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants. |
doi_str_mv | 10.1016/j.jbc.2021.100474 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8042128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821002489</els_id><sourcerecordid>2494875532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3</originalsourceid><addsrcrecordid>eNp9kU1rFDEYx4NY7Fr9AF4kRy-z5m1mMghCKVYLpR5U8BYymWd2n2UmWZPMUv30pmwt9tJcQvi_PA_5EfKGszVnvHm_W-96txZM8PJmqlXPyIozLStZ85_PyYoVpepErU_Jy5R2rBzV8RfkVMpGMVU3KzKeUxd8gniAgdq4QY8eaISEwwIUE3URMzo70TFEmrLtccI_6Dc0b4HeCHoJ36iblpQhUvR0xhzcNvghYsm4MO8nuKVXr8jJaKcEr-_vM_Lj8tP3iy_V9dfPVxfn15VTNc9VDdI2yrLOgqy1FcxZacUoHBvV2GvmHBN9LYRotWB84F0LDW9tq9pO9kr38ox8PPbul36GwYHP0U5mH3G28bcJFs1jxePWbMLBaKYEF7oUvLsviOHXAimbGZODabIewpKMUJ3SbV1LUaz8aHUxpBRhfBjDmbnjY3am8DF3fMyRT8m8_X-_h8Q_IMXw4WiA8ksHhGiSQ_AOBozgshkCPlH_F2uaoVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494875532</pqid></control><display><type>article</type><title>A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I</title><source>ScienceDirect Additional Titles</source><source>PubMed Central</source><creator>Hameedi, Mikhail A. ; Grba, Daniel N. ; Richardson, Katherine H. ; Jones, Andrew J.Y. ; Song, Wei ; Roessler, Maxie M. ; Wright, John J. ; Hirst, Judy</creator><creatorcontrib>Hameedi, Mikhail A. ; Grba, Daniel N. ; Richardson, Katherine H. ; Jones, Andrew J.Y. ; Song, Wei ; Roessler, Maxie M. ; Wright, John J. ; Hirst, Judy</creatorcontrib><description>Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron–sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.100474</identifier><identifier>PMID: 33640456</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>complex I ; cryo-electron microscopy ; dimethyl-arginine ; electron paramagnetic resonance (EPR) ; iron–sulfur cluster ; NADH:ubiquinone oxidoreductase ; Yarrowia lipolytica</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100474-100474, Article 100474</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3</citedby><cites>FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3</cites><orcidid>0000-0002-5291-4328 ; 0000-0003-2915-951X ; 0000-0001-8667-6797 ; 0000-0002-2834-5671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042128/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925821002489$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33640456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hameedi, Mikhail A.</creatorcontrib><creatorcontrib>Grba, Daniel N.</creatorcontrib><creatorcontrib>Richardson, Katherine H.</creatorcontrib><creatorcontrib>Jones, Andrew J.Y.</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Roessler, Maxie M.</creatorcontrib><creatorcontrib>Wright, John J.</creatorcontrib><creatorcontrib>Hirst, Judy</creatorcontrib><title>A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron–sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.</description><subject>complex I</subject><subject>cryo-electron microscopy</subject><subject>dimethyl-arginine</subject><subject>electron paramagnetic resonance (EPR)</subject><subject>iron–sulfur cluster</subject><subject>NADH:ubiquinone oxidoreductase</subject><subject>Yarrowia lipolytica</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFDEYx4NY7Fr9AF4kRy-z5m1mMghCKVYLpR5U8BYymWd2n2UmWZPMUv30pmwt9tJcQvi_PA_5EfKGszVnvHm_W-96txZM8PJmqlXPyIozLStZ85_PyYoVpepErU_Jy5R2rBzV8RfkVMpGMVU3KzKeUxd8gniAgdq4QY8eaISEwwIUE3URMzo70TFEmrLtccI_6Dc0b4HeCHoJ36iblpQhUvR0xhzcNvghYsm4MO8nuKVXr8jJaKcEr-_vM_Lj8tP3iy_V9dfPVxfn15VTNc9VDdI2yrLOgqy1FcxZacUoHBvV2GvmHBN9LYRotWB84F0LDW9tq9pO9kr38ox8PPbul36GwYHP0U5mH3G28bcJFs1jxePWbMLBaKYEF7oUvLsviOHXAimbGZODabIewpKMUJ3SbV1LUaz8aHUxpBRhfBjDmbnjY3am8DF3fMyRT8m8_X-_h8Q_IMXw4WiA8ksHhGiSQ_AOBozgshkCPlH_F2uaoVo</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hameedi, Mikhail A.</creator><creator>Grba, Daniel N.</creator><creator>Richardson, Katherine H.</creator><creator>Jones, Andrew J.Y.</creator><creator>Song, Wei</creator><creator>Roessler, Maxie M.</creator><creator>Wright, John J.</creator><creator>Hirst, Judy</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5291-4328</orcidid><orcidid>https://orcid.org/0000-0003-2915-951X</orcidid><orcidid>https://orcid.org/0000-0001-8667-6797</orcidid><orcidid>https://orcid.org/0000-0002-2834-5671</orcidid></search><sort><creationdate>20210101</creationdate><title>A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I</title><author>Hameedi, Mikhail A. ; Grba, Daniel N. ; Richardson, Katherine H. ; Jones, Andrew J.Y. ; Song, Wei ; Roessler, Maxie M. ; Wright, John J. ; Hirst, Judy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complex I</topic><topic>cryo-electron microscopy</topic><topic>dimethyl-arginine</topic><topic>electron paramagnetic resonance (EPR)</topic><topic>iron–sulfur cluster</topic><topic>NADH:ubiquinone oxidoreductase</topic><topic>Yarrowia lipolytica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hameedi, Mikhail A.</creatorcontrib><creatorcontrib>Grba, Daniel N.</creatorcontrib><creatorcontrib>Richardson, Katherine H.</creatorcontrib><creatorcontrib>Jones, Andrew J.Y.</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Roessler, Maxie M.</creatorcontrib><creatorcontrib>Wright, John J.</creatorcontrib><creatorcontrib>Hirst, Judy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hameedi, Mikhail A.</au><au>Grba, Daniel N.</au><au>Richardson, Katherine H.</au><au>Jones, Andrew J.Y.</au><au>Song, Wei</au><au>Roessler, Maxie M.</au><au>Wright, John J.</au><au>Hirst, Judy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100474</spage><epage>100474</epage><pages>100474-100474</pages><artnum>100474</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron–sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33640456</pmid><doi>10.1016/j.jbc.2021.100474</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5291-4328</orcidid><orcidid>https://orcid.org/0000-0003-2915-951X</orcidid><orcidid>https://orcid.org/0000-0001-8667-6797</orcidid><orcidid>https://orcid.org/0000-0002-2834-5671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2021-01, Vol.296, p.100474-100474, Article 100474 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8042128 |
source | ScienceDirect Additional Titles; PubMed Central |
subjects | complex I cryo-electron microscopy dimethyl-arginine electron paramagnetic resonance (EPR) iron–sulfur cluster NADH:ubiquinone oxidoreductase Yarrowia lipolytica |
title | A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conserved%20arginine%20residue%20is%20critical%20for%20stabilizing%20the%20N2%20FeS%20cluster%20in%20mitochondrial%20complex%20I&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hameedi,%20Mikhail%20A.&rft.date=2021-01-01&rft.volume=296&rft.spage=100474&rft.epage=100474&rft.pages=100474-100474&rft.artnum=100474&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.100474&rft_dat=%3Cproquest_pubme%3E2494875532%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-5e3a64a09ae358a20ca3a2f2c0f4fb80cc02b522278201d197e617a74793b48b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494875532&rft_id=info:pmid/33640456&rfr_iscdi=true |