Loading…

miRNA-221 Regulates Spinal Cord Injury-Induced Inflammatory Response through Targeting TNF-α Expression

Objectives. To investigate the roles of miR-221 in spinal cord injury (SCI) as well as the underlying mechanism. Methods. A mouse model of SCI was generated and used to examine dynamic changes in grip strength of the mouse upper and lower limbs. The expression of miR-221 and tumor necrosis factor-α...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2021, Vol.2021, p.6687963-6
Main Authors: Sun, Feng, Zhang, Haiwei, Huang, Tianwen, Shi, Jianhui, Wei, Tianli, Wang, Yansong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objectives. To investigate the roles of miR-221 in spinal cord injury (SCI) as well as the underlying mechanism. Methods. A mouse model of SCI was generated and used to examine dynamic changes in grip strength of the mouse upper and lower limbs. The expression of miR-221 and tumor necrosis factor-α (TNF-α) was detected by RT-qPCR and Western blot. Levels of inflammation and oxidative stress in microglia cells of the injured mice overexpressing miR-221 were then measured by ELISA. Bioinformatics analysis and dual-luciferase reporter assay were conducted to identify the miR-221 target. Results. We successfully constructed SCI mouse model. The results of qRT-PCR showed that miR-221 was gradually upregulated in the spinal cord tissue of mice in the SCI group with the prolonged injury time. At the same time, the mRNA and protein of TNF-α gradually decreased. We further confirmed through cell experiments that the inflammatory factors TNF-α and IL-6, as well as iNOS and eROS, were upregulated in spinal cord microglia cells of SCI mice, and upregulation of miR-122 can inhibit their expression. Finally, the luciferase reporter experiment confirmed that miR-122 targeted TNF-α. Conclusions. We present evidence that miR-221 promotes functional recovery of the injured spinal cord through targeting TNF-α, while alleviating inflammatory response and oxidative stress.
ISSN:2314-6133
2314-6141
DOI:10.1155/2021/6687963