Loading…

Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification

In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implem...

Full description

Saved in:
Bibliographic Details
Published in:SN computer science 2021, Vol.2 (3), p.227-227, Article 227
Main Authors: Ramya, B. N., Shetty, Shyleshwari M., Amaresh, A. M., Rakshitha, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3
cites cdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3
container_end_page 227
container_issue 3
container_start_page 227
container_title SN computer science
container_volume 2
creator Ramya, B. N.
Shetty, Shyleshwari M.
Amaresh, A. M.
Rakshitha, R.
description In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.
doi_str_mv 10.1007/s42979-021-00625-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933401484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EolXbF2CBLLFhYzq24yTeIJWjcpGqgnSKYGfFjt26SuJiJ6fq2zPt6QVYsBlbmm_-ufyEvOLwjgM0h6USutEMBGcAtVBMPSO7oq45azU0z-_-gmmtfu6Qg1IuAUAoqKpavSQ7UiLTSLVLfqzHLs90Hcc00Q9pptdxvqDfFjtER9d-muOIgR5N3XBTYqEhZXqaNn6gq7SJPeOanl17Pxe6nnM3xxAdxjTtkxehG4o_uH_3yPePx2erz-zk66cvq6MT5mSrFRNKNH1texVqnM03AYSDuuptC0pxG3rpBee8dY22jfJWiDYEa8EKhzuHIPfI-63u1WJH3zscNneDucoR97oxqYvm78wUL8x52pgWas5ViwJv7wVy-rX4MpsxFueHoZt8WooRimvJ8W4a0Tf_oJdpyXgZpLSUFfCqrZASW8rlVEr24XEYDubWOrO1zqB15s46o7Do9Z9rPJY8GIWA3AIFU9O5z0-9_yP7G7c0pBk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933401484</pqid></control><display><type>article</type><title>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</title><source>Springer Nature</source><creator>Ramya, B. N. ; Shetty, Shyleshwari M. ; Amaresh, A. M. ; Rakshitha, R.</creator><creatorcontrib>Ramya, B. N. ; Shetty, Shyleshwari M. ; Amaresh, A. M. ; Rakshitha, R.</creatorcontrib><description>In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00625-5</identifier><identifier>PMID: 33907735</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial intelligence ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Coronaviruses ; COVID-19 ; Data mining ; Data Science and Communication ; Data Structures and Information Theory ; Information Systems and Communication Service ; Machine learning ; Original Research ; Pattern Recognition and Graphics ; Scientific visualization ; Sentiment analysis ; Social networks ; Software Engineering/Programming and Operating Systems ; Stratification ; Viral diseases ; Vision</subject><ispartof>SN computer science, 2021, Vol.2 (3), p.227-227, Article 227</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</citedby><cites>FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramya, B. N.</creatorcontrib><creatorcontrib>Shetty, Shyleshwari M.</creatorcontrib><creatorcontrib>Amaresh, A. M.</creatorcontrib><creatorcontrib>Rakshitha, R.</creatorcontrib><title>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><addtitle>SN Comput Sci</addtitle><description>In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.</description><subject>Artificial intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data mining</subject><subject>Data Science and Communication</subject><subject>Data Structures and Information Theory</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Scientific visualization</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Stratification</subject><subject>Viral diseases</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1TAQhi0EolXbF2CBLLFhYzq24yTeIJWjcpGqgnSKYGfFjt26SuJiJ6fq2zPt6QVYsBlbmm_-ufyEvOLwjgM0h6USutEMBGcAtVBMPSO7oq45azU0z-_-gmmtfu6Qg1IuAUAoqKpavSQ7UiLTSLVLfqzHLs90Hcc00Q9pptdxvqDfFjtER9d-muOIgR5N3XBTYqEhZXqaNn6gq7SJPeOanl17Pxe6nnM3xxAdxjTtkxehG4o_uH_3yPePx2erz-zk66cvq6MT5mSrFRNKNH1texVqnM03AYSDuuptC0pxG3rpBee8dY22jfJWiDYEa8EKhzuHIPfI-63u1WJH3zscNneDucoR97oxqYvm78wUL8x52pgWas5ViwJv7wVy-rX4MpsxFueHoZt8WooRimvJ8W4a0Tf_oJdpyXgZpLSUFfCqrZASW8rlVEr24XEYDubWOrO1zqB15s46o7Do9Z9rPJY8GIWA3AIFU9O5z0-9_yP7G7c0pBk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ramya, B. N.</creator><creator>Shetty, Shyleshwari M.</creator><creator>Amaresh, A. M.</creator><creator>Rakshitha, R.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</title><author>Ramya, B. N. ; Shetty, Shyleshwari M. ; Amaresh, A. M. ; Rakshitha, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data mining</topic><topic>Data Science and Communication</topic><topic>Data Structures and Information Theory</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Scientific visualization</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Stratification</topic><topic>Viral diseases</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramya, B. N.</creatorcontrib><creatorcontrib>Shetty, Shyleshwari M.</creatorcontrib><creatorcontrib>Amaresh, A. M.</creatorcontrib><creatorcontrib>Rakshitha, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramya, B. N.</au><au>Shetty, Shyleshwari M.</au><au>Amaresh, A. M.</au><au>Rakshitha, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><addtitle>SN Comput Sci</addtitle><date>2021</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>227</spage><epage>227</epage><pages>227-227</pages><artnum>227</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>33907735</pmid><doi>10.1007/s42979-021-00625-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2021, Vol.2 (3), p.227-227, Article 227
issn 2662-995X
2661-8907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061158
source Springer Nature
subjects Artificial intelligence
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Coronaviruses
COVID-19
Data mining
Data Science and Communication
Data Structures and Information Theory
Information Systems and Communication Service
Machine learning
Original Research
Pattern Recognition and Graphics
Scientific visualization
Sentiment analysis
Social networks
Software Engineering/Programming and Operating Systems
Stratification
Viral diseases
Vision
title Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T23%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Simon%20Bot%20with%20Public%20Sentiment%20Analysis%20for%20Novel%20Covid-19%20Tweets%20Stratification&rft.jtitle=SN%20computer%20science&rft.au=Ramya,%20B.%20N.&rft.date=2021&rft.volume=2&rft.issue=3&rft.spage=227&rft.epage=227&rft.pages=227-227&rft.artnum=227&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00625-5&rft_dat=%3Cproquest_pubme%3E2933401484%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933401484&rft_id=info:pmid/33907735&rfr_iscdi=true