Loading…
Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification
In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implem...
Saved in:
Published in: | SN computer science 2021, Vol.2 (3), p.227-227, Article 227 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3 |
container_end_page | 227 |
container_issue | 3 |
container_start_page | 227 |
container_title | SN computer science |
container_volume | 2 |
creator | Ramya, B. N. Shetty, Shyleshwari M. Amaresh, A. M. Rakshitha, R. |
description | In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets. |
doi_str_mv | 10.1007/s42979-021-00625-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933401484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EolXbF2CBLLFhYzq24yTeIJWjcpGqgnSKYGfFjt26SuJiJ6fq2zPt6QVYsBlbmm_-ufyEvOLwjgM0h6USutEMBGcAtVBMPSO7oq45azU0z-_-gmmtfu6Qg1IuAUAoqKpavSQ7UiLTSLVLfqzHLs90Hcc00Q9pptdxvqDfFjtER9d-muOIgR5N3XBTYqEhZXqaNn6gq7SJPeOanl17Pxe6nnM3xxAdxjTtkxehG4o_uH_3yPePx2erz-zk66cvq6MT5mSrFRNKNH1texVqnM03AYSDuuptC0pxG3rpBee8dY22jfJWiDYEa8EKhzuHIPfI-63u1WJH3zscNneDucoR97oxqYvm78wUL8x52pgWas5ViwJv7wVy-rX4MpsxFueHoZt8WooRimvJ8W4a0Tf_oJdpyXgZpLSUFfCqrZASW8rlVEr24XEYDubWOrO1zqB15s46o7Do9Z9rPJY8GIWA3AIFU9O5z0-9_yP7G7c0pBk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933401484</pqid></control><display><type>article</type><title>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</title><source>Springer Nature</source><creator>Ramya, B. N. ; Shetty, Shyleshwari M. ; Amaresh, A. M. ; Rakshitha, R.</creator><creatorcontrib>Ramya, B. N. ; Shetty, Shyleshwari M. ; Amaresh, A. M. ; Rakshitha, R.</creatorcontrib><description>In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00625-5</identifier><identifier>PMID: 33907735</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial intelligence ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Coronaviruses ; COVID-19 ; Data mining ; Data Science and Communication ; Data Structures and Information Theory ; Information Systems and Communication Service ; Machine learning ; Original Research ; Pattern Recognition and Graphics ; Scientific visualization ; Sentiment analysis ; Social networks ; Software Engineering/Programming and Operating Systems ; Stratification ; Viral diseases ; Vision</subject><ispartof>SN computer science, 2021, Vol.2 (3), p.227-227, Article 227</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</citedby><cites>FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramya, B. N.</creatorcontrib><creatorcontrib>Shetty, Shyleshwari M.</creatorcontrib><creatorcontrib>Amaresh, A. M.</creatorcontrib><creatorcontrib>Rakshitha, R.</creatorcontrib><title>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><addtitle>SN Comput Sci</addtitle><description>In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.</description><subject>Artificial intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data mining</subject><subject>Data Science and Communication</subject><subject>Data Structures and Information Theory</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Scientific visualization</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Stratification</subject><subject>Viral diseases</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1TAQhi0EolXbF2CBLLFhYzq24yTeIJWjcpGqgnSKYGfFjt26SuJiJ6fq2zPt6QVYsBlbmm_-ufyEvOLwjgM0h6USutEMBGcAtVBMPSO7oq45azU0z-_-gmmtfu6Qg1IuAUAoqKpavSQ7UiLTSLVLfqzHLs90Hcc00Q9pptdxvqDfFjtER9d-muOIgR5N3XBTYqEhZXqaNn6gq7SJPeOanl17Pxe6nnM3xxAdxjTtkxehG4o_uH_3yPePx2erz-zk66cvq6MT5mSrFRNKNH1texVqnM03AYSDuuptC0pxG3rpBee8dY22jfJWiDYEa8EKhzuHIPfI-63u1WJH3zscNneDucoR97oxqYvm78wUL8x52pgWas5ViwJv7wVy-rX4MpsxFueHoZt8WooRimvJ8W4a0Tf_oJdpyXgZpLSUFfCqrZASW8rlVEr24XEYDubWOrO1zqB15s46o7Do9Z9rPJY8GIWA3AIFU9O5z0-9_yP7G7c0pBk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ramya, B. N.</creator><creator>Shetty, Shyleshwari M.</creator><creator>Amaresh, A. M.</creator><creator>Rakshitha, R.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</title><author>Ramya, B. N. ; Shetty, Shyleshwari M. ; Amaresh, A. M. ; Rakshitha, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data mining</topic><topic>Data Science and Communication</topic><topic>Data Structures and Information Theory</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Scientific visualization</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Stratification</topic><topic>Viral diseases</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramya, B. N.</creatorcontrib><creatorcontrib>Shetty, Shyleshwari M.</creatorcontrib><creatorcontrib>Amaresh, A. M.</creatorcontrib><creatorcontrib>Rakshitha, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramya, B. N.</au><au>Shetty, Shyleshwari M.</au><au>Amaresh, A. M.</au><au>Rakshitha, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><addtitle>SN Comput Sci</addtitle><date>2021</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>227</spage><epage>227</epage><pages>227-227</pages><artnum>227</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>33907735</pmid><doi>10.1007/s42979-021-00625-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-995X |
ispartof | SN computer science, 2021, Vol.2 (3), p.227-227, Article 227 |
issn | 2662-995X 2661-8907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8061158 |
source | Springer Nature |
subjects | Artificial intelligence Computer Imaging Computer Science Computer Systems Organization and Communication Networks Coronaviruses COVID-19 Data mining Data Science and Communication Data Structures and Information Theory Information Systems and Communication Service Machine learning Original Research Pattern Recognition and Graphics Scientific visualization Sentiment analysis Social networks Software Engineering/Programming and Operating Systems Stratification Viral diseases Vision |
title | Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T23%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Simon%20Bot%20with%20Public%20Sentiment%20Analysis%20for%20Novel%20Covid-19%20Tweets%20Stratification&rft.jtitle=SN%20computer%20science&rft.au=Ramya,%20B.%20N.&rft.date=2021&rft.volume=2&rft.issue=3&rft.spage=227&rft.epage=227&rft.pages=227-227&rft.artnum=227&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00625-5&rft_dat=%3Cproquest_pubme%3E2933401484%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3895-2527d6bd5f6044e7f02c064db80551bfd3e21118c79b75eb228ffbb0b2c625ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933401484&rft_id=info:pmid/33907735&rfr_iscdi=true |