Loading…

Pregnancy-Related Extracellular Vesicles Revisited

Extracellular vesicles (EVs) are small vesicles ranging from 20-200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content-which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-04, Vol.22 (8), p.3904
Main Authors: Condrat, Carmen Elena, Varlas, Valentin Nicolae, Duică, Florentina, Antoniadis, Panagiotis, Danila, Cezara Alina, Cretoiu, Dragos, Suciu, Nicolae, Crețoiu, Sanda Maria, Voinea, Silviu Cristian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracellular vesicles (EVs) are small vesicles ranging from 20-200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content-which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA-these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22083904