Loading…
Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies
The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivi...
Saved in:
Published in: | Materials 2021-04, Vol.14 (8), p.1905 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943 |
container_end_page | |
container_issue | 8 |
container_start_page | 1905 |
container_title | Materials |
container_volume | 14 |
creator | Cheng, Chung-Wei Jhang Jian, Wei-You Makala, Bhargav Prasad Reddy |
description | The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy. |
doi_str_mv | 10.3390/ma14081905 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548720687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</originalsourceid><addsrcrecordid>eNpdkc1KAzEUhYMoVmo3PoAMuBFhNJnJTJKNIMU_aHHRduUipJk77ZRpUpNpoT69qa21mk3OJV8O53IQuiD4Nk0FvpsrQjEnAmdH6IwIkcdEUHp8oFuo4_0Mh5OmhCfiFLXCzwSnnJ2h9wHUoJtqBVFPeXBRH-qmMpPIllFfOTXZ6EEDUEcj_63XRk-dNdUnFNFw6gDiwcI20UArY7awUw1MKvDn6KRUtYfO7m6j0dPjsPsS996eX7sPvVhTnDcxK3SeAQ3DWAlgGROCFWmRYcjZmAPGMKagBdalZgA0SyAgpSYiD2uXgqZtdL_1XSzHcyg0mBChlgtXzZVbS6sq-ffFVFM5sSvJcS54xoLB9c7A2Y8l-EbOK6-hrpUBu_QyyRLMcywyEtCrf-jMLp0J6wWKcpbgnG8Mb7aUdtZ7B-U-DMFyU5v8rS3Al4fx9-hPSekXKjqTNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548720687</pqid></control><display><type>article</type><title>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cheng, Chung-Wei ; Jhang Jian, Wei-You ; Makala, Bhargav Prasad Reddy</creator><creatorcontrib>Cheng, Chung-Wei ; Jhang Jian, Wei-You ; Makala, Bhargav Prasad Reddy</creatorcontrib><description>The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14081905</identifier><identifier>PMID: 33920387</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Density ; Fiber lasers ; Industrial applications ; Laboratories ; Laser beam melting ; Lasers ; Maraging steels ; Microstructure ; Production methods ; Rapid prototyping ; Residual stress ; Scanning ; Surface hardness ; Surface roughness</subject><ispartof>Materials, 2021-04, Vol.14 (8), p.1905</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</citedby><cites>FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</cites><orcidid>0000-0002-9994-0670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548720687/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548720687?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33920387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Chung-Wei</creatorcontrib><creatorcontrib>Jhang Jian, Wei-You</creatorcontrib><creatorcontrib>Makala, Bhargav Prasad Reddy</creatorcontrib><title>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.</description><subject>Density</subject><subject>Fiber lasers</subject><subject>Industrial applications</subject><subject>Laboratories</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Maraging steels</subject><subject>Microstructure</subject><subject>Production methods</subject><subject>Rapid prototyping</subject><subject>Residual stress</subject><subject>Scanning</subject><subject>Surface hardness</subject><subject>Surface roughness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1KAzEUhYMoVmo3PoAMuBFhNJnJTJKNIMU_aHHRduUipJk77ZRpUpNpoT69qa21mk3OJV8O53IQuiD4Nk0FvpsrQjEnAmdH6IwIkcdEUHp8oFuo4_0Mh5OmhCfiFLXCzwSnnJ2h9wHUoJtqBVFPeXBRH-qmMpPIllFfOTXZ6EEDUEcj_63XRk-dNdUnFNFw6gDiwcI20UArY7awUw1MKvDn6KRUtYfO7m6j0dPjsPsS996eX7sPvVhTnDcxK3SeAQ3DWAlgGROCFWmRYcjZmAPGMKagBdalZgA0SyAgpSYiD2uXgqZtdL_1XSzHcyg0mBChlgtXzZVbS6sq-ffFVFM5sSvJcS54xoLB9c7A2Y8l-EbOK6-hrpUBu_QyyRLMcywyEtCrf-jMLp0J6wWKcpbgnG8Mb7aUdtZ7B-U-DMFyU5v8rS3Al4fx9-hPSekXKjqTNA</recordid><startdate>20210411</startdate><enddate>20210411</enddate><creator>Cheng, Chung-Wei</creator><creator>Jhang Jian, Wei-You</creator><creator>Makala, Bhargav Prasad Reddy</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9994-0670</orcidid></search><sort><creationdate>20210411</creationdate><title>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</title><author>Cheng, Chung-Wei ; Jhang Jian, Wei-You ; Makala, Bhargav Prasad Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density</topic><topic>Fiber lasers</topic><topic>Industrial applications</topic><topic>Laboratories</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Maraging steels</topic><topic>Microstructure</topic><topic>Production methods</topic><topic>Rapid prototyping</topic><topic>Residual stress</topic><topic>Scanning</topic><topic>Surface hardness</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chung-Wei</creatorcontrib><creatorcontrib>Jhang Jian, Wei-You</creatorcontrib><creatorcontrib>Makala, Bhargav Prasad Reddy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chung-Wei</au><au>Jhang Jian, Wei-You</au><au>Makala, Bhargav Prasad Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-04-11</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1905</spage><pages>1905-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33920387</pmid><doi>10.3390/ma14081905</doi><orcidid>https://orcid.org/0000-0002-9994-0670</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-04, Vol.14 (8), p.1905 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069857 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Density Fiber lasers Industrial applications Laboratories Laser beam melting Lasers Maraging steels Microstructure Production methods Rapid prototyping Residual stress Scanning Surface hardness Surface roughness |
title | Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Laser%20Melting%20of%20Maraging%20Steel%20Using%20Synchronized%20Three-Spot%20Scanning%20Strategies&rft.jtitle=Materials&rft.au=Cheng,%20Chung-Wei&rft.date=2021-04-11&rft.volume=14&rft.issue=8&rft.spage=1905&rft.pages=1905-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14081905&rft_dat=%3Cproquest_pubme%3E2548720687%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548720687&rft_id=info:pmid/33920387&rfr_iscdi=true |