Loading…

Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies

The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivi...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-04, Vol.14 (8), p.1905
Main Authors: Cheng, Chung-Wei, Jhang Jian, Wei-You, Makala, Bhargav Prasad Reddy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943
cites cdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943
container_end_page
container_issue 8
container_start_page 1905
container_title Materials
container_volume 14
creator Cheng, Chung-Wei
Jhang Jian, Wei-You
Makala, Bhargav Prasad Reddy
description The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.
doi_str_mv 10.3390/ma14081905
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548720687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</originalsourceid><addsrcrecordid>eNpdkc1KAzEUhYMoVmo3PoAMuBFhNJnJTJKNIMU_aHHRduUipJk77ZRpUpNpoT69qa21mk3OJV8O53IQuiD4Nk0FvpsrQjEnAmdH6IwIkcdEUHp8oFuo4_0Mh5OmhCfiFLXCzwSnnJ2h9wHUoJtqBVFPeXBRH-qmMpPIllFfOTXZ6EEDUEcj_63XRk-dNdUnFNFw6gDiwcI20UArY7awUw1MKvDn6KRUtYfO7m6j0dPjsPsS996eX7sPvVhTnDcxK3SeAQ3DWAlgGROCFWmRYcjZmAPGMKagBdalZgA0SyAgpSYiD2uXgqZtdL_1XSzHcyg0mBChlgtXzZVbS6sq-ffFVFM5sSvJcS54xoLB9c7A2Y8l-EbOK6-hrpUBu_QyyRLMcywyEtCrf-jMLp0J6wWKcpbgnG8Mb7aUdtZ7B-U-DMFyU5v8rS3Al4fx9-hPSekXKjqTNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548720687</pqid></control><display><type>article</type><title>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cheng, Chung-Wei ; Jhang Jian, Wei-You ; Makala, Bhargav Prasad Reddy</creator><creatorcontrib>Cheng, Chung-Wei ; Jhang Jian, Wei-You ; Makala, Bhargav Prasad Reddy</creatorcontrib><description>The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14081905</identifier><identifier>PMID: 33920387</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Density ; Fiber lasers ; Industrial applications ; Laboratories ; Laser beam melting ; Lasers ; Maraging steels ; Microstructure ; Production methods ; Rapid prototyping ; Residual stress ; Scanning ; Surface hardness ; Surface roughness</subject><ispartof>Materials, 2021-04, Vol.14 (8), p.1905</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</citedby><cites>FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</cites><orcidid>0000-0002-9994-0670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548720687/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548720687?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33920387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Chung-Wei</creatorcontrib><creatorcontrib>Jhang Jian, Wei-You</creatorcontrib><creatorcontrib>Makala, Bhargav Prasad Reddy</creatorcontrib><title>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.</description><subject>Density</subject><subject>Fiber lasers</subject><subject>Industrial applications</subject><subject>Laboratories</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Maraging steels</subject><subject>Microstructure</subject><subject>Production methods</subject><subject>Rapid prototyping</subject><subject>Residual stress</subject><subject>Scanning</subject><subject>Surface hardness</subject><subject>Surface roughness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1KAzEUhYMoVmo3PoAMuBFhNJnJTJKNIMU_aHHRduUipJk77ZRpUpNpoT69qa21mk3OJV8O53IQuiD4Nk0FvpsrQjEnAmdH6IwIkcdEUHp8oFuo4_0Mh5OmhCfiFLXCzwSnnJ2h9wHUoJtqBVFPeXBRH-qmMpPIllFfOTXZ6EEDUEcj_63XRk-dNdUnFNFw6gDiwcI20UArY7awUw1MKvDn6KRUtYfO7m6j0dPjsPsS996eX7sPvVhTnDcxK3SeAQ3DWAlgGROCFWmRYcjZmAPGMKagBdalZgA0SyAgpSYiD2uXgqZtdL_1XSzHcyg0mBChlgtXzZVbS6sq-ffFVFM5sSvJcS54xoLB9c7A2Y8l-EbOK6-hrpUBu_QyyRLMcywyEtCrf-jMLp0J6wWKcpbgnG8Mb7aUdtZ7B-U-DMFyU5v8rS3Al4fx9-hPSekXKjqTNA</recordid><startdate>20210411</startdate><enddate>20210411</enddate><creator>Cheng, Chung-Wei</creator><creator>Jhang Jian, Wei-You</creator><creator>Makala, Bhargav Prasad Reddy</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9994-0670</orcidid></search><sort><creationdate>20210411</creationdate><title>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</title><author>Cheng, Chung-Wei ; Jhang Jian, Wei-You ; Makala, Bhargav Prasad Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density</topic><topic>Fiber lasers</topic><topic>Industrial applications</topic><topic>Laboratories</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Maraging steels</topic><topic>Microstructure</topic><topic>Production methods</topic><topic>Rapid prototyping</topic><topic>Residual stress</topic><topic>Scanning</topic><topic>Surface hardness</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chung-Wei</creatorcontrib><creatorcontrib>Jhang Jian, Wei-You</creatorcontrib><creatorcontrib>Makala, Bhargav Prasad Reddy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chung-Wei</au><au>Jhang Jian, Wei-You</au><au>Makala, Bhargav Prasad Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-04-11</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1905</spage><pages>1905-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The selective laser melting (SLM) process, a kind of metal additive manufacturing method, can produce parts with complex geometries that cannot be easily manufactured using material removal processes. With increasing industrial applications, there are still issues such as part quality and productivity that need to be resolved. In this study, maraging steel parts fabricated by synchronized three-spot scanning strategies, i.e., lateral spatial (LS) and spatial inline (SiL), are firstly presented. The LS and SiL represent the three-spot offset direction is perpendicular and parallel to the scanning direction, respectively. A laboratory SLM machine equipped with a fiber laser and three-spot module is used to fabricate the maraging steel parts with two scanning strategies, i.e., LS and SiL. The influence of these scanning strategies on the surface roughness, relative density, hardness, molten pool shapes, and microstructures are investigated. The relative density (~99.02%) and surface hardness (~34.0 HRC) are experimentally found to be higher than the SiL by the LS scanning strategy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33920387</pmid><doi>10.3390/ma14081905</doi><orcidid>https://orcid.org/0000-0002-9994-0670</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-04, Vol.14 (8), p.1905
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069857
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Density
Fiber lasers
Industrial applications
Laboratories
Laser beam melting
Lasers
Maraging steels
Microstructure
Production methods
Rapid prototyping
Residual stress
Scanning
Surface hardness
Surface roughness
title Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Laser%20Melting%20of%20Maraging%20Steel%20Using%20Synchronized%20Three-Spot%20Scanning%20Strategies&rft.jtitle=Materials&rft.au=Cheng,%20Chung-Wei&rft.date=2021-04-11&rft.volume=14&rft.issue=8&rft.spage=1905&rft.pages=1905-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14081905&rft_dat=%3Cproquest_pubme%3E2548720687%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-7dc65e4c40ba9e757997d3d50e67b8e00eb4ec90cfc7ee452e579fc196819f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548720687&rft_id=info:pmid/33920387&rfr_iscdi=true