Loading…

Studies of Nickel-Rich LiNi0.85Co0.10Mn0.05O2 Cathode Materials Doped with Molybdenum Ions for Lithium-Ion Batteries

In this work, we continued our systematic investigations on synthesis, structural studies, and electrochemical behavior of Ni-rich materials Li[NixCoyMnz]O2 (x + y + z = 1; x ≥ 0.8) for advanced lithium-ion batteries (LIBs). We focused, herein, on LiNi0.85Co0.10Mn0.05O2 (NCM85) and demonstrated that...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-04, Vol.14 (8), p.2070
Main Authors: Susai, Francis Amalraj, Kovacheva, Daniela, Kravchuk, Tatyana, Kauffmann, Yaron, Maiti, Sandipan, Chakraborty, Arup, Kunnikuruvan, Sooraj, Talianker, Michael, Sclar, Hadar, Fleger, Yafit, Markovsky, Boris, Aurbach, Doron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we continued our systematic investigations on synthesis, structural studies, and electrochemical behavior of Ni-rich materials Li[NixCoyMnz]O2 (x + y + z = 1; x ≥ 0.8) for advanced lithium-ion batteries (LIBs). We focused, herein, on LiNi0.85Co0.10Mn0.05O2 (NCM85) and demonstrated that doping this material with high-charge cation Mo6+ (1 at. %, by a minor nickel substitution) results in substantially stable cycling performance, increased rate capability, lowering of the voltage hysteresis, and impedance in Li-cells with EC-EMC/LiPF6 solutions. Incorporation of Mo-dopant into the NCM85 structure was carried out by in-situ approach, upon the synthesis using ammonium molybdate as the precursor. From X-ray diffraction studies and based on our previous investigation of Mo-doped NCM523 and Ni-rich NCM811 materials, it was revealed that Mo6+ preferably substitutes Ni residing either in 3a or 3b sites. We correlated the improved behavior of the doped NCM85 electrode materials in Li-cells with a partial Mo segregation at the surface and at the grain boundaries, a tendency established previously in our lab for the other members of the Li[NixCoyMnz]O2 family.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14082070