Loading…
Phenotype Concept Set Construction from Concept Pair Likelihoods
Phenotyping algorithms are essential tools for conducting clinical research on observational data. Manually devel- oped phenotyping algorithms, such as those curated within the eMERGE (electronic Medical Records and Genomics) Network, represent the gold standard but are time consuming to create. In...
Saved in:
Published in: | AMIA ... Annual Symposium proceedings 2020, Vol.2020, p.1080-1089 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phenotyping algorithms are essential tools for conducting clinical research on observational data. Manually devel- oped phenotyping algorithms, such as those curated within the eMERGE (electronic Medical Records and Genomics) Network, represent the gold standard but are time consuming to create. In this work, we propose a framework for learning from the structure of eMERGE phenotype concept sets to assist construction of novel phenotype definitions. We use eMERGE phenotypes as a source of reference concept sets and engineer rich features characterizing the con- cept pairs within each set. We treat these pairwise relationships as edges in a concept graph, train models to perform edge prediction, and identify candidate phenotype concept sets as highly connected subgraphs. Candidate concept sets may then be interrogated and composed to construct novel phenotype definitions. |
---|---|
ISSN: | 1559-4076 |