Loading…
Leverage Real-world Longitudinal Data in Large Clinical Research Networks for Alzheimer's Disease and Related Dementia (ADRD)
With vast amounts ofpatients' medical information, electronic health records (EHRs) are becoming one of the most important data sources in biomedical and health care research. Effectively integrating data from multiple clinical sites can help provide more generalized real-world evidence that is...
Saved in:
Published in: | AMIA ... Annual Symposium proceedings 2020, Vol.2020, p.393-401 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With vast amounts ofpatients' medical information, electronic health records (EHRs) are becoming one of the most important data sources in biomedical and health care research. Effectively integrating data from multiple clinical sites can help provide more generalized real-world evidence that is clinically meaningful. To analyze the clinical data from multiple sites, distributed algorithms are developed to protect patient privacy without sharing individual-level medical information. In this paper, we applied the One-shot Distributed Algorithm for Cox proportional hazard model (ODAC) to the longitudinal data from the OneFlorida Clinical Research Consortium to demonstrate the feasibility of implementing the distributed algorithms in large research networks. We studied the associations between the clinical risk factors and Alzheimer's disease and related dementia (ADRD) onsets to advance clinical research on our understanding of the complex risk factors of ADRD and ultimately improve the care of ADRD patients. |
---|---|
ISSN: | 1559-4076 |