Loading…

Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx

There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of gene...

Full description

Saved in:
Bibliographic Details
Published in:Behavior genetics 2021-05, Vol.51 (3), p.331-342
Main Authors: Kirkpatrick, Robert M., Pritikin, Joshua N., Hunter, Michael D., Neale, Michael C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3
cites cdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3
container_end_page 342
container_issue 3
container_start_page 331
container_title Behavior genetics
container_volume 51
creator Kirkpatrick, Robert M.
Pritikin, Joshua N.
Hunter, Michael D.
Neale, Michael C.
description There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.
doi_str_mv 10.1007/s10519-020-10037-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8096671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477501448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</originalsourceid><addsrcrecordid>eNp9UctOGzEUtRAVhMcPsKhGYsPGrd-e2SChiNJKiZB4rC2Px5OYztjBnoH073EaSmkXrK7uPQ_76ABwgtEXjJD8mjDiuIKIIJh3KiHfARPMJYWUVHIXTBBCGJaEsX1wkNJDXolgfA_sU8poxQieAD8Nfe2884vidoijGcaoO3j5OOrBBV_MQ2O7DfjshmVxZX3onYE3ttODbbxNCc71EN26uLEpT5OvxVyvXT_2xcz9zNplCE3hfHG9sn6-PgKfWt0le_w6D8H9t8u76Xc4u776Mb2YQcMkG6BsRVmVmhCBmeRUm1IzbY2uWyFrqRvOiWhxK6um1hUqMWkJFdhWBovNoaWH4Hzruxrr3jbG-iHnUqvoeh1_qaCd-hfxbqkW4UmVqBJC4mxw9moQw-OYw6neJWO7TnsbxqQIk5IjzFiZqaf_UR_CGH2OpwgnmEiU28gssmWZGFKKtn37DEZqU6fa1qlynep3nYpn0ef3Md4kf_rLBLolpAz5hY1_3_7A9gUbIa0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521270297</pqid></control><display><type>article</type><title>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Springer Nature</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Sociology Collection</source><creator>Kirkpatrick, Robert M. ; Pritikin, Joshua N. ; Hunter, Michael D. ; Neale, Michael C.</creator><creatorcontrib>Kirkpatrick, Robert M. ; Pritikin, Joshua N. ; Hunter, Michael D. ; Neale, Michael C.</creatorcontrib><description>There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.</description><identifier>ISSN: 0001-8244</identifier><identifier>EISSN: 1573-3297</identifier><identifier>DOI: 10.1007/s10519-020-10037-5</identifier><identifier>PMID: 33439421</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adoption studies ; Analysis of Variance ; Behavior ; Behavioral Science and Psychology ; Biometry - methods ; Clinical Psychology ; Design ; Genetics ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genotype ; Genotypes ; Health Psychology ; Heritability ; Likelihood Functions ; Models, Genetic ; Models, Theoretical ; Original Research ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Psychology ; Public Health ; Relatedness ; Relatives ; Software ; Statistics as Topic - methods ; Structural equation modeling ; Twins - genetics</subject><ispartof>Behavior genetics, 2021-05, Vol.51 (3), p.331-342</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</citedby><cites>FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2521270297/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2521270297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,12844,21392,21393,27922,27923,30997,33609,33610,34528,34529,43731,44113,73991,74409</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33439421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirkpatrick, Robert M.</creatorcontrib><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Hunter, Michael D.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><title>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</title><title>Behavior genetics</title><addtitle>Behav Genet</addtitle><addtitle>Behav Genet</addtitle><description>There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.</description><subject>Adoption studies</subject><subject>Analysis of Variance</subject><subject>Behavior</subject><subject>Behavioral Science and Psychology</subject><subject>Biometry - methods</subject><subject>Clinical Psychology</subject><subject>Design</subject><subject>Genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Health Psychology</subject><subject>Heritability</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Original Research</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Psychology</subject><subject>Public Health</subject><subject>Relatedness</subject><subject>Relatives</subject><subject>Software</subject><subject>Statistics as Topic - methods</subject><subject>Structural equation modeling</subject><subject>Twins - genetics</subject><issn>0001-8244</issn><issn>1573-3297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>ALSLI</sourceid><sourceid>HEHIP</sourceid><sourceid>M2S</sourceid><recordid>eNp9UctOGzEUtRAVhMcPsKhGYsPGrd-e2SChiNJKiZB4rC2Px5OYztjBnoH073EaSmkXrK7uPQ_76ABwgtEXjJD8mjDiuIKIIJh3KiHfARPMJYWUVHIXTBBCGJaEsX1wkNJDXolgfA_sU8poxQieAD8Nfe2884vidoijGcaoO3j5OOrBBV_MQ2O7DfjshmVxZX3onYE3ttODbbxNCc71EN26uLEpT5OvxVyvXT_2xcz9zNplCE3hfHG9sn6-PgKfWt0le_w6D8H9t8u76Xc4u776Mb2YQcMkG6BsRVmVmhCBmeRUm1IzbY2uWyFrqRvOiWhxK6um1hUqMWkJFdhWBovNoaWH4Hzruxrr3jbG-iHnUqvoeh1_qaCd-hfxbqkW4UmVqBJC4mxw9moQw-OYw6neJWO7TnsbxqQIk5IjzFiZqaf_UR_CGH2OpwgnmEiU28gssmWZGFKKtn37DEZqU6fa1qlynep3nYpn0ef3Md4kf_rLBLolpAz5hY1_3_7A9gUbIa0o</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kirkpatrick, Robert M.</creator><creator>Pritikin, Joshua N.</creator><creator>Hunter, Michael D.</creator><creator>Neale, Michael C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QJ</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210501</creationdate><title>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</title><author>Kirkpatrick, Robert M. ; Pritikin, Joshua N. ; Hunter, Michael D. ; Neale, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adoption studies</topic><topic>Analysis of Variance</topic><topic>Behavior</topic><topic>Behavioral Science and Psychology</topic><topic>Biometry - methods</topic><topic>Clinical Psychology</topic><topic>Design</topic><topic>Genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Health Psychology</topic><topic>Heritability</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Original Research</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Psychology</topic><topic>Public Health</topic><topic>Relatedness</topic><topic>Relatives</topic><topic>Software</topic><topic>Statistics as Topic - methods</topic><topic>Structural equation modeling</topic><topic>Twins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkpatrick, Robert M.</creatorcontrib><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Hunter, Michael D.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Sociology Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkpatrick, Robert M.</au><au>Pritikin, Joshua N.</au><au>Hunter, Michael D.</au><au>Neale, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</atitle><jtitle>Behavior genetics</jtitle><stitle>Behav Genet</stitle><addtitle>Behav Genet</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>331</spage><epage>342</epage><pages>331-342</pages><issn>0001-8244</issn><eissn>1573-3297</eissn><abstract>There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33439421</pmid><doi>10.1007/s10519-020-10037-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8244
ispartof Behavior genetics, 2021-05, Vol.51 (3), p.331-342
issn 0001-8244
1573-3297
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8096671
source Applied Social Sciences Index & Abstracts (ASSIA); Springer Nature; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Sociology Collection
subjects Adoption studies
Analysis of Variance
Behavior
Behavioral Science and Psychology
Biometry - methods
Clinical Psychology
Design
Genetics
Genome-Wide Association Study - methods
Genomes
Genomics
Genotype
Genotypes
Health Psychology
Heritability
Likelihood Functions
Models, Genetic
Models, Theoretical
Original Research
Phenotype
Polymorphism, Single Nucleotide - genetics
Psychology
Public Health
Relatedness
Relatives
Software
Statistics as Topic - methods
Structural equation modeling
Twins - genetics
title Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Structural-Equation%20Modeling%20with%20Genomic-Relatedness-Matrix%20Restricted%20Maximum%20Likelihood%20in%20OpenMx&rft.jtitle=Behavior%20genetics&rft.au=Kirkpatrick,%20Robert%20M.&rft.date=2021-05-01&rft.volume=51&rft.issue=3&rft.spage=331&rft.epage=342&rft.pages=331-342&rft.issn=0001-8244&rft.eissn=1573-3297&rft_id=info:doi/10.1007/s10519-020-10037-5&rft_dat=%3Cproquest_pubme%3E2477501448%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521270297&rft_id=info:pmid/33439421&rfr_iscdi=true