Loading…
Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx
There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of gene...
Saved in:
Published in: | Behavior genetics 2021-05, Vol.51 (3), p.331-342 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3 |
container_end_page | 342 |
container_issue | 3 |
container_start_page | 331 |
container_title | Behavior genetics |
container_volume | 51 |
creator | Kirkpatrick, Robert M. Pritikin, Joshua N. Hunter, Michael D. Neale, Michael C. |
description | There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development. |
doi_str_mv | 10.1007/s10519-020-10037-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8096671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477501448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</originalsourceid><addsrcrecordid>eNp9UctOGzEUtRAVhMcPsKhGYsPGrd-e2SChiNJKiZB4rC2Px5OYztjBnoH073EaSmkXrK7uPQ_76ABwgtEXjJD8mjDiuIKIIJh3KiHfARPMJYWUVHIXTBBCGJaEsX1wkNJDXolgfA_sU8poxQieAD8Nfe2884vidoijGcaoO3j5OOrBBV_MQ2O7DfjshmVxZX3onYE3ttODbbxNCc71EN26uLEpT5OvxVyvXT_2xcz9zNplCE3hfHG9sn6-PgKfWt0le_w6D8H9t8u76Xc4u776Mb2YQcMkG6BsRVmVmhCBmeRUm1IzbY2uWyFrqRvOiWhxK6um1hUqMWkJFdhWBovNoaWH4Hzruxrr3jbG-iHnUqvoeh1_qaCd-hfxbqkW4UmVqBJC4mxw9moQw-OYw6neJWO7TnsbxqQIk5IjzFiZqaf_UR_CGH2OpwgnmEiU28gssmWZGFKKtn37DEZqU6fa1qlynep3nYpn0ef3Md4kf_rLBLolpAz5hY1_3_7A9gUbIa0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521270297</pqid></control><display><type>article</type><title>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Springer Nature</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Sociology Collection</source><creator>Kirkpatrick, Robert M. ; Pritikin, Joshua N. ; Hunter, Michael D. ; Neale, Michael C.</creator><creatorcontrib>Kirkpatrick, Robert M. ; Pritikin, Joshua N. ; Hunter, Michael D. ; Neale, Michael C.</creatorcontrib><description>There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.</description><identifier>ISSN: 0001-8244</identifier><identifier>EISSN: 1573-3297</identifier><identifier>DOI: 10.1007/s10519-020-10037-5</identifier><identifier>PMID: 33439421</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adoption studies ; Analysis of Variance ; Behavior ; Behavioral Science and Psychology ; Biometry - methods ; Clinical Psychology ; Design ; Genetics ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genotype ; Genotypes ; Health Psychology ; Heritability ; Likelihood Functions ; Models, Genetic ; Models, Theoretical ; Original Research ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Psychology ; Public Health ; Relatedness ; Relatives ; Software ; Statistics as Topic - methods ; Structural equation modeling ; Twins - genetics</subject><ispartof>Behavior genetics, 2021-05, Vol.51 (3), p.331-342</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</citedby><cites>FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2521270297/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2521270297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,12844,21392,21393,27922,27923,30997,33609,33610,34528,34529,43731,44113,73991,74409</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33439421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirkpatrick, Robert M.</creatorcontrib><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Hunter, Michael D.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><title>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</title><title>Behavior genetics</title><addtitle>Behav Genet</addtitle><addtitle>Behav Genet</addtitle><description>There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.</description><subject>Adoption studies</subject><subject>Analysis of Variance</subject><subject>Behavior</subject><subject>Behavioral Science and Psychology</subject><subject>Biometry - methods</subject><subject>Clinical Psychology</subject><subject>Design</subject><subject>Genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Health Psychology</subject><subject>Heritability</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Original Research</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Psychology</subject><subject>Public Health</subject><subject>Relatedness</subject><subject>Relatives</subject><subject>Software</subject><subject>Statistics as Topic - methods</subject><subject>Structural equation modeling</subject><subject>Twins - genetics</subject><issn>0001-8244</issn><issn>1573-3297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>ALSLI</sourceid><sourceid>HEHIP</sourceid><sourceid>M2S</sourceid><recordid>eNp9UctOGzEUtRAVhMcPsKhGYsPGrd-e2SChiNJKiZB4rC2Px5OYztjBnoH073EaSmkXrK7uPQ_76ABwgtEXjJD8mjDiuIKIIJh3KiHfARPMJYWUVHIXTBBCGJaEsX1wkNJDXolgfA_sU8poxQieAD8Nfe2884vidoijGcaoO3j5OOrBBV_MQ2O7DfjshmVxZX3onYE3ttODbbxNCc71EN26uLEpT5OvxVyvXT_2xcz9zNplCE3hfHG9sn6-PgKfWt0le_w6D8H9t8u76Xc4u776Mb2YQcMkG6BsRVmVmhCBmeRUm1IzbY2uWyFrqRvOiWhxK6um1hUqMWkJFdhWBovNoaWH4Hzruxrr3jbG-iHnUqvoeh1_qaCd-hfxbqkW4UmVqBJC4mxw9moQw-OYw6neJWO7TnsbxqQIk5IjzFiZqaf_UR_CGH2OpwgnmEiU28gssmWZGFKKtn37DEZqU6fa1qlynep3nYpn0ef3Md4kf_rLBLolpAz5hY1_3_7A9gUbIa0o</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kirkpatrick, Robert M.</creator><creator>Pritikin, Joshua N.</creator><creator>Hunter, Michael D.</creator><creator>Neale, Michael C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QJ</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210501</creationdate><title>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</title><author>Kirkpatrick, Robert M. ; Pritikin, Joshua N. ; Hunter, Michael D. ; Neale, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adoption studies</topic><topic>Analysis of Variance</topic><topic>Behavior</topic><topic>Behavioral Science and Psychology</topic><topic>Biometry - methods</topic><topic>Clinical Psychology</topic><topic>Design</topic><topic>Genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Health Psychology</topic><topic>Heritability</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Original Research</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Psychology</topic><topic>Public Health</topic><topic>Relatedness</topic><topic>Relatives</topic><topic>Software</topic><topic>Statistics as Topic - methods</topic><topic>Structural equation modeling</topic><topic>Twins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkpatrick, Robert M.</creatorcontrib><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Hunter, Michael D.</creatorcontrib><creatorcontrib>Neale, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Sociology Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkpatrick, Robert M.</au><au>Pritikin, Joshua N.</au><au>Hunter, Michael D.</au><au>Neale, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx</atitle><jtitle>Behavior genetics</jtitle><stitle>Behav Genet</stitle><addtitle>Behav Genet</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>331</spage><epage>342</epage><pages>331-342</pages><issn>0001-8244</issn><eissn>1573-3297</eissn><abstract>There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has emerged for estimating biometrical variance–covariance components based not upon the expected degree of genetic resemblance among relatives, but upon the observed degree of genetic resemblance among unrelated individuals for whom genome-wide genotypes are available—genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing GREML software is concerned with quickly and efficiently estimating heritability coefficients, genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples of genotyped participants. We therefore introduce a feature in the OpenMx package, “mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day genomic study designs. We explain the additional functionality this new feature has brought to OpenMx, and how the new functionality works. We provide an illustrative example of its use. We discuss the feature’s current limitations, and our plans for its further development.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33439421</pmid><doi>10.1007/s10519-020-10037-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8244 |
ispartof | Behavior genetics, 2021-05, Vol.51 (3), p.331-342 |
issn | 0001-8244 1573-3297 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8096671 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Springer Nature; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Sociology Collection |
subjects | Adoption studies Analysis of Variance Behavior Behavioral Science and Psychology Biometry - methods Clinical Psychology Design Genetics Genome-Wide Association Study - methods Genomes Genomics Genotype Genotypes Health Psychology Heritability Likelihood Functions Models, Genetic Models, Theoretical Original Research Phenotype Polymorphism, Single Nucleotide - genetics Psychology Public Health Relatedness Relatives Software Statistics as Topic - methods Structural equation modeling Twins - genetics |
title | Combining Structural-Equation Modeling with Genomic-Relatedness-Matrix Restricted Maximum Likelihood in OpenMx |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Structural-Equation%20Modeling%20with%20Genomic-Relatedness-Matrix%20Restricted%20Maximum%20Likelihood%20in%20OpenMx&rft.jtitle=Behavior%20genetics&rft.au=Kirkpatrick,%20Robert%20M.&rft.date=2021-05-01&rft.volume=51&rft.issue=3&rft.spage=331&rft.epage=342&rft.pages=331-342&rft.issn=0001-8244&rft.eissn=1573-3297&rft_id=info:doi/10.1007/s10519-020-10037-5&rft_dat=%3Cproquest_pubme%3E2477501448%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-7f6898a22614753ac8a4aecabf67b7ad5526f1f79dba90812f2361e9c16ba90f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521270297&rft_id=info:pmid/33439421&rfr_iscdi=true |