Loading…
Studies of Dynamic Binding of Amino Acids to TiO2 Nanoparticle Surfaces by Solution NMR and Molecular Dynamics Simulations
Adsorption of biomolecules onto material surfaces involves a potentially complex mechanism where molecular species interact to varying degrees with a heterogeneous material surface. Surface adsorption studies by atomic force microscopy, sum frequency generation spectroscopy, and solid-state NMR dete...
Saved in:
Published in: | Langmuir 2020-09, Vol.36 (35), p.10341-10350 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adsorption of biomolecules onto material surfaces involves a potentially complex mechanism where molecular species interact to varying degrees with a heterogeneous material surface. Surface adsorption studies by atomic force microscopy, sum frequency generation spectroscopy, and solid-state NMR detect the structures and interactions of biomolecular species that are bound to material surfaces, which, in the absence of a solid–liquid interface, do not exchange rapidly between surface-bound forms and free molecular species in bulk solution. Solution NMR has the potential to complement these techniques by detecting and studying transiently bound biomolecules at the liquid–solid interface. Herein, we show that dark-state exchange saturation transfer (DEST) NMR experiments on gel-stabilized TiO2 nanoparticle (NP) samples detect several forms of biomolecular adsorption onto titanium(IV) oxide surfaces. Specifically, we use the DEST approach to study the interaction of amino acids arginine (Arg), lysine (Lys), leucine (Leu), alanine (Ala), and aspartic acid (Asp) with TiO2 rutile NP surfaces. Whereas Leu, Ala, and Asp display only a single weakly interacting form in the presence of TiO2 NPs, Arg and Lys displayed at least two distinct bound forms: a species that is surface bound and retains a degree of reorientational motion and a second more tightly bound form characterized by broadened DEST profiles upon the addition of TiO2 NPs. Molecular dynamics simulations indicate different surface bound states for both Lys and Arg depending on the degree of TiO2 surface hydroxylation but only a single bound state for Asp regardless of the degree of surface hydroxylation, in agreement with results obtained from the analysis of DEST profiles. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c01256 |