Loading…

Mps1 promotes poleward chromosome movements in meiotic prometaphase

In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are as...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2021-05, Vol.32 (10), p.1020-1032
Main Authors: Meyer, RĂ©gis E, Tipton, Aaron R, LaVictoire, Rebecca, Gorbsky, Gary J, Dawson, Dean S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are associated with one spindle pole and then go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent become bioriented-attached to microtubules from opposite sides of the spindle. The conserved kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that is needed for efficient triggering of the migration of microtubule-attached kinetochores toward the poles and promotes microtubule depolymerization. Our data support the model Mps1 acts at the kinetochore to coordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to then move the chromosome.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.E20-08-0525-T