Loading…
A novel substitution in NS5A enhances the resistance of hepatitis C virus genotype 3 to daclatasvir
Hepatitis C virus (HCV) genotype 3 presents a high level of both baseline and acquired resistance to direct-acting antivirals (DAAs), particularly those targeting the NS5A protein. To understand this resistance we studied a cohort of Brazilian patients treated with the NS5A DAA, daclatasvir and the...
Saved in:
Published in: | Journal of general virology 2021-01, Vol.102 (1) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hepatitis C virus (HCV) genotype 3 presents a high level of both baseline and acquired resistance to direct-acting antivirals (DAAs), particularly those targeting the NS5A protein. To understand this resistance we studied a cohort of Brazilian patients treated with the NS5A DAA, daclatasvir and the nucleoside analogue, sofosbuvir. We observed a novel substitution at NS5A amino acid residue 98 [serine to glycine (S98G)] in patients who relapsed post-treatment. The effect of this substitution on both replication fitness and resistance to DAAs was evaluated using two genotype 3 subgenomic replicons. S98G had a modest effect on replication, but in combination with the previously characterized resistance-associated substitution (RAS), Y93H, resulted in a significant increase in daclatasvir resistance. This result suggests that combinations of substitutions may drive a high level of DAA resistance and provide some clues to the mechanism of action of the NS5A-targeting DAAs. |
---|---|
ISSN: | 0022-1317 1465-2099 |
DOI: | 10.1099/JGV.0.001496 |