Loading…

Bond-selective imaging by optically sensing the mid-infrared photothermal effect

Mid-infrared (IR) spectroscopic imaging using inherent vibrational contrast has been broadly used as a powerful analytical tool for sample identification and characterization. However, the low spatial resolution and large water absorption associated with the long IR wavelengths hinder its applicatio...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-05, Vol.7 (20)
Main Authors: Bai, Yeran, Yin, Jiaze, Cheng, Ji-Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mid-infrared (IR) spectroscopic imaging using inherent vibrational contrast has been broadly used as a powerful analytical tool for sample identification and characterization. However, the low spatial resolution and large water absorption associated with the long IR wavelengths hinder its applications to study subcellular features in living systems. Recently developed mid-infrared photothermal (MIP) microscopy overcomes these limitations by probing the IR absorption-induced photothermal effect using a visible light. MIP microscopy yields submicrometer spatial resolution with high spectral fidelity and reduced water background. In this review, we categorize different photothermal contrast mechanisms and discuss instrumentations for scanning and widefield MIP microscope configurations. We highlight a broad range of applications from life science to materials. We further provide future perspective and potential venues in MIP microscopy field.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abg1559