Loading…

FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition

The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a tr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 2021-05, Vol.131 (10), p.1-15
Main Authors: Reilly, Shannon M, Abu-Odeh, Mohammad, Ameka, Magdalene, DeLuca, Julia H, Naber, Meghan C, Dadpey, Benyamin, Ebadat, Nima, Gomez, Andrew V, Peng, Xiaoling, Poirier, BreAnne, Walk, Elyse, Potthoff, Matthew J, Saltiel, Alan R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3
cites cdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3
container_end_page 15
container_issue 10
container_start_page 1
container_title The Journal of clinical investigation
container_volume 131
creator Reilly, Shannon M
Abu-Odeh, Mohammad
Ameka, Magdalene
DeLuca, Julia H
Naber, Meghan C
Dadpey, Benyamin
Ebadat, Nima
Gomez, Andrew V
Peng, Xiaoling
Poirier, BreAnne
Walk, Elyse
Potthoff, Matthew J
Saltiel, Alan R
description The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.
doi_str_mv 10.1172/JCI145546
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8121507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536552415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EovwtuACKxAYWBY9_EmeDBBWFUiQ2ZW057oS6SuPWTpA4GNfgTAQVKmA1T5pvnt7oEXIM9AIgY5cPgxEIKUW6RfZAStVXjKvtX7pH9mOcUwpCSLFLepwrxrIM9sjt8G7IIHExCbhqXcBpUvqQNDNMFtiYwlfOJgXWWLomJr5MRuPxx_vl5GbcHdUzV7jG-fqQ7JSminj0PQ_I8_B2MrjvPz7djQbXj30rKG_6EliOqhSp4EBZJqwx1AIKBiVn5bRQNKfAucxMnmOaS2SFBUuVMVORd5ofkKu177ItFji1WDfBVHoZ3MKEN-2N0383tZvpF_-qFTCQNOsMzr4Ngl-1GBu9cNFiVZkafRs1kzRPqeLpF3r6D537NtTdex3FUymZANlR52vKBh9jwHITBqj-KkdvyunYk9_pN-RPG_wTQGSHzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536552415</pqid></control><display><type>article</type><title>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</title><source>EZB Free E-Journals</source><source>PubMed Central</source><creator>Reilly, Shannon M ; Abu-Odeh, Mohammad ; Ameka, Magdalene ; DeLuca, Julia H ; Naber, Meghan C ; Dadpey, Benyamin ; Ebadat, Nima ; Gomez, Andrew V ; Peng, Xiaoling ; Poirier, BreAnne ; Walk, Elyse ; Potthoff, Matthew J ; Saltiel, Alan R</creator><creatorcontrib>Reilly, Shannon M ; Abu-Odeh, Mohammad ; Ameka, Magdalene ; DeLuca, Julia H ; Naber, Meghan C ; Dadpey, Benyamin ; Ebadat, Nima ; Gomez, Andrew V ; Peng, Xiaoling ; Poirier, BreAnne ; Walk, Elyse ; Potthoff, Matthew J ; Saltiel, Alan R</creatorcontrib><description>The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI145546</identifier><identifier>PMID: 33822771</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adipocytes ; Adipose tissue ; Aminopyridines - pharmacology ; Animal models ; Animals ; Autocrine signalling ; Biomedical research ; Blood glucose ; Blood Glucose - genetics ; Blood Glucose - metabolism ; Body weight loss ; Catecholamines ; Chemokines ; Cytokines ; Diabetes ; Diet ; Eating - drug effects ; Eating - genetics ; Energy ; Energy expenditure ; Energy Metabolism - drug effects ; Energy Metabolism - genetics ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Food ; Food intake ; Gene expression ; Gluconeogenesis ; Gluconeogenesis - drug effects ; Gluconeogenesis - genetics ; Glucose ; I-kappa B Kinase - genetics ; I-kappa B Kinase - metabolism ; Inflammation ; Insulin ; Insulin resistance ; Interleukin 6 ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Kinases ; Liver ; Liver - metabolism ; Metabolism ; Mice ; Mice, Knockout ; Obesity ; Protein kinase ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Stat3 protein ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Weight control</subject><ispartof>The Journal of clinical investigation, 2021-05, Vol.131 (10), p.1-15</ispartof><rights>Copyright American Society for Clinical Investigation May 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</citedby><cites>FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</cites><orcidid>0000-0001-5765-6834 ; 0000-0003-0412-2446 ; 0000-0001-9158-5128 ; 0000-0002-9726-9828 ; 0000-0002-6408-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121507/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121507/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33822771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reilly, Shannon M</creatorcontrib><creatorcontrib>Abu-Odeh, Mohammad</creatorcontrib><creatorcontrib>Ameka, Magdalene</creatorcontrib><creatorcontrib>DeLuca, Julia H</creatorcontrib><creatorcontrib>Naber, Meghan C</creatorcontrib><creatorcontrib>Dadpey, Benyamin</creatorcontrib><creatorcontrib>Ebadat, Nima</creatorcontrib><creatorcontrib>Gomez, Andrew V</creatorcontrib><creatorcontrib>Peng, Xiaoling</creatorcontrib><creatorcontrib>Poirier, BreAnne</creatorcontrib><creatorcontrib>Walk, Elyse</creatorcontrib><creatorcontrib>Potthoff, Matthew J</creatorcontrib><creatorcontrib>Saltiel, Alan R</creatorcontrib><title>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.</description><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Aminopyridines - pharmacology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Autocrine signalling</subject><subject>Biomedical research</subject><subject>Blood glucose</subject><subject>Blood Glucose - genetics</subject><subject>Blood Glucose - metabolism</subject><subject>Body weight loss</subject><subject>Catecholamines</subject><subject>Chemokines</subject><subject>Cytokines</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Eating - drug effects</subject><subject>Eating - genetics</subject><subject>Energy</subject><subject>Energy expenditure</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - genetics</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Food</subject><subject>Food intake</subject><subject>Gene expression</subject><subject>Gluconeogenesis</subject><subject>Gluconeogenesis - drug effects</subject><subject>Gluconeogenesis - genetics</subject><subject>Glucose</subject><subject>I-kappa B Kinase - genetics</subject><subject>I-kappa B Kinase - metabolism</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Interleukin 6</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Kinases</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Obesity</subject><subject>Protein kinase</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Weight control</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EovwtuACKxAYWBY9_EmeDBBWFUiQ2ZW057oS6SuPWTpA4GNfgTAQVKmA1T5pvnt7oEXIM9AIgY5cPgxEIKUW6RfZAStVXjKvtX7pH9mOcUwpCSLFLepwrxrIM9sjt8G7IIHExCbhqXcBpUvqQNDNMFtiYwlfOJgXWWLomJr5MRuPxx_vl5GbcHdUzV7jG-fqQ7JSminj0PQ_I8_B2MrjvPz7djQbXj30rKG_6EliOqhSp4EBZJqwx1AIKBiVn5bRQNKfAucxMnmOaS2SFBUuVMVORd5ofkKu177ItFji1WDfBVHoZ3MKEN-2N0383tZvpF_-qFTCQNOsMzr4Ngl-1GBu9cNFiVZkafRs1kzRPqeLpF3r6D537NtTdex3FUymZANlR52vKBh9jwHITBqj-KkdvyunYk9_pN-RPG_wTQGSHzg</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Reilly, Shannon M</creator><creator>Abu-Odeh, Mohammad</creator><creator>Ameka, Magdalene</creator><creator>DeLuca, Julia H</creator><creator>Naber, Meghan C</creator><creator>Dadpey, Benyamin</creator><creator>Ebadat, Nima</creator><creator>Gomez, Andrew V</creator><creator>Peng, Xiaoling</creator><creator>Poirier, BreAnne</creator><creator>Walk, Elyse</creator><creator>Potthoff, Matthew J</creator><creator>Saltiel, Alan R</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5765-6834</orcidid><orcidid>https://orcid.org/0000-0003-0412-2446</orcidid><orcidid>https://orcid.org/0000-0001-9158-5128</orcidid><orcidid>https://orcid.org/0000-0002-9726-9828</orcidid><orcidid>https://orcid.org/0000-0002-6408-9097</orcidid></search><sort><creationdate>20210517</creationdate><title>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</title><author>Reilly, Shannon M ; Abu-Odeh, Mohammad ; Ameka, Magdalene ; DeLuca, Julia H ; Naber, Meghan C ; Dadpey, Benyamin ; Ebadat, Nima ; Gomez, Andrew V ; Peng, Xiaoling ; Poirier, BreAnne ; Walk, Elyse ; Potthoff, Matthew J ; Saltiel, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Aminopyridines - pharmacology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Autocrine signalling</topic><topic>Biomedical research</topic><topic>Blood glucose</topic><topic>Blood Glucose - genetics</topic><topic>Blood Glucose - metabolism</topic><topic>Body weight loss</topic><topic>Catecholamines</topic><topic>Chemokines</topic><topic>Cytokines</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Eating - drug effects</topic><topic>Eating - genetics</topic><topic>Energy</topic><topic>Energy expenditure</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - genetics</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Food</topic><topic>Food intake</topic><topic>Gene expression</topic><topic>Gluconeogenesis</topic><topic>Gluconeogenesis - drug effects</topic><topic>Gluconeogenesis - genetics</topic><topic>Glucose</topic><topic>I-kappa B Kinase - genetics</topic><topic>I-kappa B Kinase - metabolism</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Interleukin 6</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Kinases</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Obesity</topic><topic>Protein kinase</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reilly, Shannon M</creatorcontrib><creatorcontrib>Abu-Odeh, Mohammad</creatorcontrib><creatorcontrib>Ameka, Magdalene</creatorcontrib><creatorcontrib>DeLuca, Julia H</creatorcontrib><creatorcontrib>Naber, Meghan C</creatorcontrib><creatorcontrib>Dadpey, Benyamin</creatorcontrib><creatorcontrib>Ebadat, Nima</creatorcontrib><creatorcontrib>Gomez, Andrew V</creatorcontrib><creatorcontrib>Peng, Xiaoling</creatorcontrib><creatorcontrib>Poirier, BreAnne</creatorcontrib><creatorcontrib>Walk, Elyse</creatorcontrib><creatorcontrib>Potthoff, Matthew J</creatorcontrib><creatorcontrib>Saltiel, Alan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reilly, Shannon M</au><au>Abu-Odeh, Mohammad</au><au>Ameka, Magdalene</au><au>DeLuca, Julia H</au><au>Naber, Meghan C</au><au>Dadpey, Benyamin</au><au>Ebadat, Nima</au><au>Gomez, Andrew V</au><au>Peng, Xiaoling</au><au>Poirier, BreAnne</au><au>Walk, Elyse</au><au>Potthoff, Matthew J</au><au>Saltiel, Alan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>131</volume><issue>10</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>33822771</pmid><doi>10.1172/JCI145546</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5765-6834</orcidid><orcidid>https://orcid.org/0000-0003-0412-2446</orcidid><orcidid>https://orcid.org/0000-0001-9158-5128</orcidid><orcidid>https://orcid.org/0000-0002-9726-9828</orcidid><orcidid>https://orcid.org/0000-0002-6408-9097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8238
ispartof The Journal of clinical investigation, 2021-05, Vol.131 (10), p.1-15
issn 1558-8238
0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8121507
source EZB Free E-Journals; PubMed Central
subjects Adipocytes
Adipose tissue
Aminopyridines - pharmacology
Animal models
Animals
Autocrine signalling
Biomedical research
Blood glucose
Blood Glucose - genetics
Blood Glucose - metabolism
Body weight loss
Catecholamines
Chemokines
Cytokines
Diabetes
Diet
Eating - drug effects
Eating - genetics
Energy
Energy expenditure
Energy Metabolism - drug effects
Energy Metabolism - genetics
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
Food
Food intake
Gene expression
Gluconeogenesis
Gluconeogenesis - drug effects
Gluconeogenesis - genetics
Glucose
I-kappa B Kinase - genetics
I-kappa B Kinase - metabolism
Inflammation
Insulin
Insulin resistance
Interleukin 6
Interleukin-6 - genetics
Interleukin-6 - metabolism
Kinases
Liver
Liver - metabolism
Metabolism
Mice
Mice, Knockout
Obesity
Protein kinase
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteins
Stat3 protein
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Weight control
title FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FGF21%20is%20required%20for%20the%20metabolic%20benefits%20of%20IKK%CE%B5/TBK1%20inhibition&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Reilly,%20Shannon%20M&rft.date=2021-05-17&rft.volume=131&rft.issue=10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI145546&rft_dat=%3Cproquest_pubme%3E2536552415%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536552415&rft_id=info:pmid/33822771&rfr_iscdi=true