Loading…
FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition
The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a tr...
Saved in:
Published in: | The Journal of clinical investigation 2021-05, Vol.131 (10), p.1-15 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3 |
container_end_page | 15 |
container_issue | 10 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 131 |
creator | Reilly, Shannon M Abu-Odeh, Mohammad Ameka, Magdalene DeLuca, Julia H Naber, Meghan C Dadpey, Benyamin Ebadat, Nima Gomez, Andrew V Peng, Xiaoling Poirier, BreAnne Walk, Elyse Potthoff, Matthew J Saltiel, Alan R |
description | The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters. |
doi_str_mv | 10.1172/JCI145546 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8121507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536552415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EovwtuACKxAYWBY9_EmeDBBWFUiQ2ZW057oS6SuPWTpA4GNfgTAQVKmA1T5pvnt7oEXIM9AIgY5cPgxEIKUW6RfZAStVXjKvtX7pH9mOcUwpCSLFLepwrxrIM9sjt8G7IIHExCbhqXcBpUvqQNDNMFtiYwlfOJgXWWLomJr5MRuPxx_vl5GbcHdUzV7jG-fqQ7JSminj0PQ_I8_B2MrjvPz7djQbXj30rKG_6EliOqhSp4EBZJqwx1AIKBiVn5bRQNKfAucxMnmOaS2SFBUuVMVORd5ofkKu177ItFji1WDfBVHoZ3MKEN-2N0383tZvpF_-qFTCQNOsMzr4Ngl-1GBu9cNFiVZkafRs1kzRPqeLpF3r6D537NtTdex3FUymZANlR52vKBh9jwHITBqj-KkdvyunYk9_pN-RPG_wTQGSHzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536552415</pqid></control><display><type>article</type><title>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</title><source>EZB Free E-Journals</source><source>PubMed Central</source><creator>Reilly, Shannon M ; Abu-Odeh, Mohammad ; Ameka, Magdalene ; DeLuca, Julia H ; Naber, Meghan C ; Dadpey, Benyamin ; Ebadat, Nima ; Gomez, Andrew V ; Peng, Xiaoling ; Poirier, BreAnne ; Walk, Elyse ; Potthoff, Matthew J ; Saltiel, Alan R</creator><creatorcontrib>Reilly, Shannon M ; Abu-Odeh, Mohammad ; Ameka, Magdalene ; DeLuca, Julia H ; Naber, Meghan C ; Dadpey, Benyamin ; Ebadat, Nima ; Gomez, Andrew V ; Peng, Xiaoling ; Poirier, BreAnne ; Walk, Elyse ; Potthoff, Matthew J ; Saltiel, Alan R</creatorcontrib><description>The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI145546</identifier><identifier>PMID: 33822771</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adipocytes ; Adipose tissue ; Aminopyridines - pharmacology ; Animal models ; Animals ; Autocrine signalling ; Biomedical research ; Blood glucose ; Blood Glucose - genetics ; Blood Glucose - metabolism ; Body weight loss ; Catecholamines ; Chemokines ; Cytokines ; Diabetes ; Diet ; Eating - drug effects ; Eating - genetics ; Energy ; Energy expenditure ; Energy Metabolism - drug effects ; Energy Metabolism - genetics ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Food ; Food intake ; Gene expression ; Gluconeogenesis ; Gluconeogenesis - drug effects ; Gluconeogenesis - genetics ; Glucose ; I-kappa B Kinase - genetics ; I-kappa B Kinase - metabolism ; Inflammation ; Insulin ; Insulin resistance ; Interleukin 6 ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Kinases ; Liver ; Liver - metabolism ; Metabolism ; Mice ; Mice, Knockout ; Obesity ; Protein kinase ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Stat3 protein ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Weight control</subject><ispartof>The Journal of clinical investigation, 2021-05, Vol.131 (10), p.1-15</ispartof><rights>Copyright American Society for Clinical Investigation May 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</citedby><cites>FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</cites><orcidid>0000-0001-5765-6834 ; 0000-0003-0412-2446 ; 0000-0001-9158-5128 ; 0000-0002-9726-9828 ; 0000-0002-6408-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121507/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121507/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33822771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reilly, Shannon M</creatorcontrib><creatorcontrib>Abu-Odeh, Mohammad</creatorcontrib><creatorcontrib>Ameka, Magdalene</creatorcontrib><creatorcontrib>DeLuca, Julia H</creatorcontrib><creatorcontrib>Naber, Meghan C</creatorcontrib><creatorcontrib>Dadpey, Benyamin</creatorcontrib><creatorcontrib>Ebadat, Nima</creatorcontrib><creatorcontrib>Gomez, Andrew V</creatorcontrib><creatorcontrib>Peng, Xiaoling</creatorcontrib><creatorcontrib>Poirier, BreAnne</creatorcontrib><creatorcontrib>Walk, Elyse</creatorcontrib><creatorcontrib>Potthoff, Matthew J</creatorcontrib><creatorcontrib>Saltiel, Alan R</creatorcontrib><title>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.</description><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Aminopyridines - pharmacology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Autocrine signalling</subject><subject>Biomedical research</subject><subject>Blood glucose</subject><subject>Blood Glucose - genetics</subject><subject>Blood Glucose - metabolism</subject><subject>Body weight loss</subject><subject>Catecholamines</subject><subject>Chemokines</subject><subject>Cytokines</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Eating - drug effects</subject><subject>Eating - genetics</subject><subject>Energy</subject><subject>Energy expenditure</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - genetics</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Food</subject><subject>Food intake</subject><subject>Gene expression</subject><subject>Gluconeogenesis</subject><subject>Gluconeogenesis - drug effects</subject><subject>Gluconeogenesis - genetics</subject><subject>Glucose</subject><subject>I-kappa B Kinase - genetics</subject><subject>I-kappa B Kinase - metabolism</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Interleukin 6</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Kinases</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Obesity</subject><subject>Protein kinase</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Weight control</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EovwtuACKxAYWBY9_EmeDBBWFUiQ2ZW057oS6SuPWTpA4GNfgTAQVKmA1T5pvnt7oEXIM9AIgY5cPgxEIKUW6RfZAStVXjKvtX7pH9mOcUwpCSLFLepwrxrIM9sjt8G7IIHExCbhqXcBpUvqQNDNMFtiYwlfOJgXWWLomJr5MRuPxx_vl5GbcHdUzV7jG-fqQ7JSminj0PQ_I8_B2MrjvPz7djQbXj30rKG_6EliOqhSp4EBZJqwx1AIKBiVn5bRQNKfAucxMnmOaS2SFBUuVMVORd5ofkKu177ItFji1WDfBVHoZ3MKEN-2N0383tZvpF_-qFTCQNOsMzr4Ngl-1GBu9cNFiVZkafRs1kzRPqeLpF3r6D537NtTdex3FUymZANlR52vKBh9jwHITBqj-KkdvyunYk9_pN-RPG_wTQGSHzg</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Reilly, Shannon M</creator><creator>Abu-Odeh, Mohammad</creator><creator>Ameka, Magdalene</creator><creator>DeLuca, Julia H</creator><creator>Naber, Meghan C</creator><creator>Dadpey, Benyamin</creator><creator>Ebadat, Nima</creator><creator>Gomez, Andrew V</creator><creator>Peng, Xiaoling</creator><creator>Poirier, BreAnne</creator><creator>Walk, Elyse</creator><creator>Potthoff, Matthew J</creator><creator>Saltiel, Alan R</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5765-6834</orcidid><orcidid>https://orcid.org/0000-0003-0412-2446</orcidid><orcidid>https://orcid.org/0000-0001-9158-5128</orcidid><orcidid>https://orcid.org/0000-0002-9726-9828</orcidid><orcidid>https://orcid.org/0000-0002-6408-9097</orcidid></search><sort><creationdate>20210517</creationdate><title>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</title><author>Reilly, Shannon M ; Abu-Odeh, Mohammad ; Ameka, Magdalene ; DeLuca, Julia H ; Naber, Meghan C ; Dadpey, Benyamin ; Ebadat, Nima ; Gomez, Andrew V ; Peng, Xiaoling ; Poirier, BreAnne ; Walk, Elyse ; Potthoff, Matthew J ; Saltiel, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Aminopyridines - pharmacology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Autocrine signalling</topic><topic>Biomedical research</topic><topic>Blood glucose</topic><topic>Blood Glucose - genetics</topic><topic>Blood Glucose - metabolism</topic><topic>Body weight loss</topic><topic>Catecholamines</topic><topic>Chemokines</topic><topic>Cytokines</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Eating - drug effects</topic><topic>Eating - genetics</topic><topic>Energy</topic><topic>Energy expenditure</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - genetics</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Food</topic><topic>Food intake</topic><topic>Gene expression</topic><topic>Gluconeogenesis</topic><topic>Gluconeogenesis - drug effects</topic><topic>Gluconeogenesis - genetics</topic><topic>Glucose</topic><topic>I-kappa B Kinase - genetics</topic><topic>I-kappa B Kinase - metabolism</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Interleukin 6</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Kinases</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Obesity</topic><topic>Protein kinase</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reilly, Shannon M</creatorcontrib><creatorcontrib>Abu-Odeh, Mohammad</creatorcontrib><creatorcontrib>Ameka, Magdalene</creatorcontrib><creatorcontrib>DeLuca, Julia H</creatorcontrib><creatorcontrib>Naber, Meghan C</creatorcontrib><creatorcontrib>Dadpey, Benyamin</creatorcontrib><creatorcontrib>Ebadat, Nima</creatorcontrib><creatorcontrib>Gomez, Andrew V</creatorcontrib><creatorcontrib>Peng, Xiaoling</creatorcontrib><creatorcontrib>Poirier, BreAnne</creatorcontrib><creatorcontrib>Walk, Elyse</creatorcontrib><creatorcontrib>Potthoff, Matthew J</creatorcontrib><creatorcontrib>Saltiel, Alan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reilly, Shannon M</au><au>Abu-Odeh, Mohammad</au><au>Ameka, Magdalene</au><au>DeLuca, Julia H</au><au>Naber, Meghan C</au><au>Dadpey, Benyamin</au><au>Ebadat, Nima</au><au>Gomez, Andrew V</au><au>Peng, Xiaoling</au><au>Poirier, BreAnne</au><au>Walk, Elyse</au><au>Potthoff, Matthew J</au><au>Saltiel, Alan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>131</volume><issue>10</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>33822771</pmid><doi>10.1172/JCI145546</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5765-6834</orcidid><orcidid>https://orcid.org/0000-0003-0412-2446</orcidid><orcidid>https://orcid.org/0000-0001-9158-5128</orcidid><orcidid>https://orcid.org/0000-0002-9726-9828</orcidid><orcidid>https://orcid.org/0000-0002-6408-9097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2021-05, Vol.131 (10), p.1-15 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8121507 |
source | EZB Free E-Journals; PubMed Central |
subjects | Adipocytes Adipose tissue Aminopyridines - pharmacology Animal models Animals Autocrine signalling Biomedical research Blood glucose Blood Glucose - genetics Blood Glucose - metabolism Body weight loss Catecholamines Chemokines Cytokines Diabetes Diet Eating - drug effects Eating - genetics Energy Energy expenditure Energy Metabolism - drug effects Energy Metabolism - genetics Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Food Food intake Gene expression Gluconeogenesis Gluconeogenesis - drug effects Gluconeogenesis - genetics Glucose I-kappa B Kinase - genetics I-kappa B Kinase - metabolism Inflammation Insulin Insulin resistance Interleukin 6 Interleukin-6 - genetics Interleukin-6 - metabolism Kinases Liver Liver - metabolism Metabolism Mice Mice, Knockout Obesity Protein kinase Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteins Stat3 protein STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism Weight control |
title | FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FGF21%20is%20required%20for%20the%20metabolic%20benefits%20of%20IKK%CE%B5/TBK1%20inhibition&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Reilly,%20Shannon%20M&rft.date=2021-05-17&rft.volume=131&rft.issue=10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI145546&rft_dat=%3Cproquest_pubme%3E2536552415%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-5129e8f464310274caa0c1e421f32fdb809013357a99e695e2bc1c08aad492bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536552415&rft_id=info:pmid/33822771&rfr_iscdi=true |