Loading…
Interleukin-32θ Triggers Cellular Senescence and Reduces Sensitivity to Doxorubicin-Mediated Cytotoxicity in MDA-MB-231 Cells
The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects canc...
Saved in:
Published in: | International journal of molecular sciences 2021-05, Vol.22 (9), p.4974 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects cancer cell growth and evaluated the responses of IL-32θ-expressing cells to other cancer therapy. We compared the functions of IL-32θ in triple-negative breast cancer MDA-MB-231 cells that stably express IL-32θ, with MDA-MB-231 cells transfected with a mock vector. Slower growth was observed in cells expressing IL-32θ than in control cells, and changes were noted in nuclear morphology, mitotic division, and nucleolar size between the two groups of cells. Interleukin-32θ significantly reduced the colony-forming ability of MDA-MB-231 cells and induced permanent cell cycle arrest at the G1 phase. Long-term IL-32θ accumulation triggered permanent senescence and chromosomal instability in MDA-MB-231 cells. Genotoxic drug doxorubicin (DR) reduced the viability of MDA-MB-231 cells not expressing IL-32θ more than in cells expressing IL-32θ. Overall, these findings suggest that IL-32θ exerts antiproliferative effects in breast cancer cells and initiates senescence, which may cause DR resistance. Therefore, targeting IL-32θ in combination with DR treatment may not be suitable for treating metastatic breast cancer. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms22094974 |