Loading…
Enhancement of Diffusion Assisted Bonding of the Bimetal Composite of Austenitic/Ferric Steels via Intrinsic Interlayers
We investigate the effect of the intrinsic interlayers on the diffusion assisted bonding properties of the austenitic steel (stainless steel 316L) and ferric steels (Low-carbon steel Q345R) in a hot rolling process by molecular dynamics simulations and experiment. The introduction of an intrinsic in...
Saved in:
Published in: | Materials 2021-05, Vol.14 (9), p.2416 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the effect of the intrinsic interlayers on the diffusion assisted bonding properties of the austenitic steel (stainless steel 316L) and ferric steels (Low-carbon steel Q345R) in a hot rolling process by molecular dynamics simulations and experiment. The introduction of an intrinsic interlayer (Cr or Ni) widens the diffusion region, leading to enhancement of bonding. The thickness of the diffusion region enlarges with an increase of temperature, with an enhancement factor of 195% and 108%, for Cr and Ni interlayer, respectively, at the temperature of 1800 K. Further diffusion analysis reveals the unsymmetrical diffusion near the interface. Our experimental investigation evidenced our computation discovery. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14092416 |