Loading…

Bridging across patient subgroups in phase I oncology trials that incorporate animal data

In this paper, we develop a general Bayesian hierarchical model for bridging across patient subgroups in phase I oncology trials, for which preliminary information about the dose–toxicity relationship can be drawn from animal studies. Parameters that re-scale the doses to adjust for intrinsic differ...

Full description

Saved in:
Bibliographic Details
Published in:Statistical methods in medical research 2021-04, Vol.30 (4), p.1057-1071
Main Authors: Zheng, Haiyan, Hampson, Lisa V, Jaki, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93
cites cdi_FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93
container_end_page 1071
container_issue 4
container_start_page 1057
container_title Statistical methods in medical research
container_volume 30
creator Zheng, Haiyan
Hampson, Lisa V
Jaki, Thomas
description In this paper, we develop a general Bayesian hierarchical model for bridging across patient subgroups in phase I oncology trials, for which preliminary information about the dose–toxicity relationship can be drawn from animal studies. Parameters that re-scale the doses to adjust for intrinsic differences in toxicity, either between animals and humans or between human subgroups, are introduced to each dose–toxicity model. Appropriate priors are specified for these scaling parameters, which capture the magnitude of uncertainty surrounding the animal-to-human translation and bridging assumption. After mapping data onto a common, ‘average’ human dosing scale, human dose–toxicity parameters are assumed to be exchangeable either with the standardised, animal study-specific parameters, or between themselves across human subgroups. Random-effects distributions are distinguished by different covariance matrices that reflect the between-study heterogeneity in animals and humans. Possibility of non-exchangeability is allowed to avoid inferences for extreme subgroups being overly influenced by their complementary data. We illustrate the proposed approach with hypothetical examples, and use simulation to compare the operating characteristics of trials analysed using our Bayesian model with several alternatives. Numerical results show that the proposed approach yields robust inferences, even when data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.
doi_str_mv 10.1177/0962280220986580
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8129464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280220986580</sage_id><sourcerecordid>2528410672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93</originalsourceid><addsrcrecordid>eNp1kctLxDAQxoMouj7uniTguZpMHk0vgi6-QPCiB08hbdNuZW1qkgr-92bddX2Alwzk-803HzMIHVJyQmmen5JCAigCQAolhSIbaEJ5nmeEMb6JJgs5W-g7aDeEZ0JITnixjXYYE4QqBRP0dOG7uu36FpvKuxDwYGJn-4jDWLbejUPAXY-HmQkW32LXV27u2nccfWfmAceZiUmvnB-cN9Fi03cvZo5rE80-2moSYw9WdQ89Xl0-TG-yu_vr2-n5XVYxlceM21o0tRCqMUyUhttCkSa9spQSWPqTtSRAVQnAAcBUuUwwh1owoWhTsD10tvQdxvLF1lUK781cDz4l8e_amU7_Vvpuplv3phWFgkueDI5XBt69jjZE_exG36fMGgQoTonMIVFkSX2uydtmPYESvTiG_nuM1HL0M9m64Wv7CciWQDCt_Z76r-EHbtmSCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528410672</pqid></control><display><type>article</type><title>Bridging across patient subgroups in phase I oncology trials that incorporate animal data</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Sage Journals Online</source><creator>Zheng, Haiyan ; Hampson, Lisa V ; Jaki, Thomas</creator><creatorcontrib>Zheng, Haiyan ; Hampson, Lisa V ; Jaki, Thomas</creatorcontrib><description>In this paper, we develop a general Bayesian hierarchical model for bridging across patient subgroups in phase I oncology trials, for which preliminary information about the dose–toxicity relationship can be drawn from animal studies. Parameters that re-scale the doses to adjust for intrinsic differences in toxicity, either between animals and humans or between human subgroups, are introduced to each dose–toxicity model. Appropriate priors are specified for these scaling parameters, which capture the magnitude of uncertainty surrounding the animal-to-human translation and bridging assumption. After mapping data onto a common, ‘average’ human dosing scale, human dose–toxicity parameters are assumed to be exchangeable either with the standardised, animal study-specific parameters, or between themselves across human subgroups. Random-effects distributions are distinguished by different covariance matrices that reflect the between-study heterogeneity in animals and humans. Possibility of non-exchangeability is allowed to avoid inferences for extreme subgroups being overly influenced by their complementary data. We illustrate the proposed approach with hypothetical examples, and use simulation to compare the operating characteristics of trials analysed using our Bayesian model with several alternatives. Numerical results show that the proposed approach yields robust inferences, even when data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280220986580</identifier><identifier>PMID: 33501882</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Bayesian analysis ; Dosage ; Heterogeneity ; Humans ; Mapping ; Mathematical models ; Matrices ; Oncology ; Parameters ; Robustness (mathematics) ; Simulation ; Subgroups ; Toxicity ; Translation ; Uncertainty</subject><ispartof>Statistical methods in medical research, 2021-04, Vol.30 (4), p.1057-1071</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021 2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93</citedby><cites>FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93</cites><orcidid>0000-0002-3385-2117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924,30998,79235</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33501882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>Hampson, Lisa V</creatorcontrib><creatorcontrib>Jaki, Thomas</creatorcontrib><title>Bridging across patient subgroups in phase I oncology trials that incorporate animal data</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>In this paper, we develop a general Bayesian hierarchical model for bridging across patient subgroups in phase I oncology trials, for which preliminary information about the dose–toxicity relationship can be drawn from animal studies. Parameters that re-scale the doses to adjust for intrinsic differences in toxicity, either between animals and humans or between human subgroups, are introduced to each dose–toxicity model. Appropriate priors are specified for these scaling parameters, which capture the magnitude of uncertainty surrounding the animal-to-human translation and bridging assumption. After mapping data onto a common, ‘average’ human dosing scale, human dose–toxicity parameters are assumed to be exchangeable either with the standardised, animal study-specific parameters, or between themselves across human subgroups. Random-effects distributions are distinguished by different covariance matrices that reflect the between-study heterogeneity in animals and humans. Possibility of non-exchangeability is allowed to avoid inferences for extreme subgroups being overly influenced by their complementary data. We illustrate the proposed approach with hypothetical examples, and use simulation to compare the operating characteristics of trials analysed using our Bayesian model with several alternatives. Numerical results show that the proposed approach yields robust inferences, even when data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.</description><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Dosage</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Oncology</subject><subject>Parameters</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Subgroups</subject><subject>Toxicity</subject><subject>Translation</subject><subject>Uncertainty</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kctLxDAQxoMouj7uniTguZpMHk0vgi6-QPCiB08hbdNuZW1qkgr-92bddX2Alwzk-803HzMIHVJyQmmen5JCAigCQAolhSIbaEJ5nmeEMb6JJgs5W-g7aDeEZ0JITnixjXYYE4QqBRP0dOG7uu36FpvKuxDwYGJn-4jDWLbejUPAXY-HmQkW32LXV27u2nccfWfmAceZiUmvnB-cN9Fi03cvZo5rE80-2moSYw9WdQ89Xl0-TG-yu_vr2-n5XVYxlceM21o0tRCqMUyUhttCkSa9spQSWPqTtSRAVQnAAcBUuUwwh1owoWhTsD10tvQdxvLF1lUK781cDz4l8e_amU7_Vvpuplv3phWFgkueDI5XBt69jjZE_exG36fMGgQoTonMIVFkSX2uydtmPYESvTiG_nuM1HL0M9m64Wv7CciWQDCt_Z76r-EHbtmSCQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zheng, Haiyan</creator><creator>Hampson, Lisa V</creator><creator>Jaki, Thomas</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3385-2117</orcidid></search><sort><creationdate>20210401</creationdate><title>Bridging across patient subgroups in phase I oncology trials that incorporate animal data</title><author>Zheng, Haiyan ; Hampson, Lisa V ; Jaki, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Dosage</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Oncology</topic><topic>Parameters</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Subgroups</topic><topic>Toxicity</topic><topic>Translation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>Hampson, Lisa V</creatorcontrib><creatorcontrib>Jaki, Thomas</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Haiyan</au><au>Hampson, Lisa V</au><au>Jaki, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging across patient subgroups in phase I oncology trials that incorporate animal data</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>1057</spage><epage>1071</epage><pages>1057-1071</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>In this paper, we develop a general Bayesian hierarchical model for bridging across patient subgroups in phase I oncology trials, for which preliminary information about the dose–toxicity relationship can be drawn from animal studies. Parameters that re-scale the doses to adjust for intrinsic differences in toxicity, either between animals and humans or between human subgroups, are introduced to each dose–toxicity model. Appropriate priors are specified for these scaling parameters, which capture the magnitude of uncertainty surrounding the animal-to-human translation and bridging assumption. After mapping data onto a common, ‘average’ human dosing scale, human dose–toxicity parameters are assumed to be exchangeable either with the standardised, animal study-specific parameters, or between themselves across human subgroups. Random-effects distributions are distinguished by different covariance matrices that reflect the between-study heterogeneity in animals and humans. Possibility of non-exchangeability is allowed to avoid inferences for extreme subgroups being overly influenced by their complementary data. We illustrate the proposed approach with hypothetical examples, and use simulation to compare the operating characteristics of trials analysed using our Bayesian model with several alternatives. Numerical results show that the proposed approach yields robust inferences, even when data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33501882</pmid><doi>10.1177/0962280220986580</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3385-2117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2021-04, Vol.30 (4), p.1057-1071
issn 0962-2802
1477-0334
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8129464
source Applied Social Sciences Index & Abstracts (ASSIA); Sage Journals Online
subjects Animals
Bayesian analysis
Dosage
Heterogeneity
Humans
Mapping
Mathematical models
Matrices
Oncology
Parameters
Robustness (mathematics)
Simulation
Subgroups
Toxicity
Translation
Uncertainty
title Bridging across patient subgroups in phase I oncology trials that incorporate animal data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20across%20patient%20subgroups%20in%20phase%20I%20oncology%20trials%20that%20incorporate%20animal%20data&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Zheng,%20Haiyan&rft.date=2021-04-01&rft.volume=30&rft.issue=4&rft.spage=1057&rft.epage=1071&rft.pages=1057-1071&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280220986580&rft_dat=%3Cproquest_pubme%3E2528410672%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-4ed5fd558fa35ba4e980f4e96b6623a356d60218b224222ac7655842d53581f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528410672&rft_id=info:pmid/33501882&rft_sage_id=10.1177_0962280220986580&rfr_iscdi=true