Loading…

Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications

A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay ( 2008 ). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on E...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology 2021-07, Vol.83 (7), p.73-73, Article 73
Main Authors: Kempes, Christopher P., Follows, Michael J., Smith, Hillary, Graham, Heather, House, Christopher H., Levin, Simon A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13
cites cdi_FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13
container_end_page 73
container_issue 7
container_start_page 73
container_title Bulletin of mathematical biology
container_volume 83
creator Kempes, Christopher P.
Follows, Michael J.
Smith, Hillary
Graham, Heather
House, Christopher H.
Levin, Simon A.
description A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay ( 2008 ). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth’s oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958 ; Geider and La Roche 2002 ; Eighty years of Redfield 2014 ). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012 , 2016 , 2017 , 2019 ) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made—particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry—and develop our theory in connection with these often deployed measurements.
doi_str_mv 10.1007/s11538-021-00877-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8131296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528843205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxa2qqAm0X4BDtRKXXhbGY--u94KURvyTEBzgbjne2cTRZp3am0r00-MklAKHnjzy_N6znx5jxxxOOUB1FjkvhMoBeQ6gqiovPrExLxDzugT8zMYANeYKJYzYYYxLSKJa1F_YSMgkgBLH7O6Kegqmc3-oyR4G7-zC-RUN4SkzfZP9dH5O3i5o5eL2rvUhm6TJz5zv_NxZ02WT9bpLw-B8H7-yg9Z0kb69nEfs8fLicXqd395f3Uwnt7mVlRxyzo0hEC2QRFVaCZxQWs7bpoFK4qy1pVC1ICAzKwitRagQbVkXlmPLxRE739uuN7MVNZb6IWXQ6-BWJjxpb5x-v-ndQs_9b6244FiXyeDHi0HwvzYUB50CWuo605PfRI0FqhpLpVRCTz6gS78JfUq3o5QUCEWicE_Z4GMM1L5-hoPetqX3benUlt61pbei729jvEr-1pMAsQdiWvVzCv_e_o_tM9BXoWY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528843205</pqid></control><display><type>article</type><title>Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications</title><source>Springer Nature</source><creator>Kempes, Christopher P. ; Follows, Michael J. ; Smith, Hillary ; Graham, Heather ; House, Christopher H. ; Levin, Simon A.</creator><creatorcontrib>Kempes, Christopher P. ; Follows, Michael J. ; Smith, Hillary ; Graham, Heather ; House, Christopher H. ; Levin, Simon A.</creatorcontrib><description>A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay ( 2008 ). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth’s oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958 ; Geider and La Roche 2002 ; Eighty years of Redfield 2014 ). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012 , 2016 , 2017 , 2019 ) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made—particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry—and develop our theory in connection with these often deployed measurements.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-021-00877-5</identifier><identifier>PMID: 34008062</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astrobiology ; Biogeochemistry ; Cell Biology ; Exobiology ; In situ measurement ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Oceans ; Physiology ; Space missions ; Special Issue: Celebrating J. D. Murray ; Stoichiometry</subject><ispartof>Bulletin of mathematical biology, 2021-07, Vol.83 (7), p.73-73, Article 73</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13</citedby><cites>FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34008062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kempes, Christopher P.</creatorcontrib><creatorcontrib>Follows, Michael J.</creatorcontrib><creatorcontrib>Smith, Hillary</creatorcontrib><creatorcontrib>Graham, Heather</creatorcontrib><creatorcontrib>House, Christopher H.</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><title>Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay ( 2008 ). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth’s oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958 ; Geider and La Roche 2002 ; Eighty years of Redfield 2014 ). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012 , 2016 , 2017 , 2019 ) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made—particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry—and develop our theory in connection with these often deployed measurements.</description><subject>Astrobiology</subject><subject>Biogeochemistry</subject><subject>Cell Biology</subject><subject>Exobiology</subject><subject>In situ measurement</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oceans</subject><subject>Physiology</subject><subject>Space missions</subject><subject>Special Issue: Celebrating J. D. Murray</subject><subject>Stoichiometry</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxa2qqAm0X4BDtRKXXhbGY--u94KURvyTEBzgbjne2cTRZp3am0r00-MklAKHnjzy_N6znx5jxxxOOUB1FjkvhMoBeQ6gqiovPrExLxDzugT8zMYANeYKJYzYYYxLSKJa1F_YSMgkgBLH7O6Kegqmc3-oyR4G7-zC-RUN4SkzfZP9dH5O3i5o5eL2rvUhm6TJz5zv_NxZ02WT9bpLw-B8H7-yg9Z0kb69nEfs8fLicXqd395f3Uwnt7mVlRxyzo0hEC2QRFVaCZxQWs7bpoFK4qy1pVC1ICAzKwitRagQbVkXlmPLxRE739uuN7MVNZb6IWXQ6-BWJjxpb5x-v-ndQs_9b6244FiXyeDHi0HwvzYUB50CWuo605PfRI0FqhpLpVRCTz6gS78JfUq3o5QUCEWicE_Z4GMM1L5-hoPetqX3benUlt61pbei729jvEr-1pMAsQdiWvVzCv_e_o_tM9BXoWY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kempes, Christopher P.</creator><creator>Follows, Michael J.</creator><creator>Smith, Hillary</creator><creator>Graham, Heather</creator><creator>House, Christopher H.</creator><creator>Levin, Simon A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210701</creationdate><title>Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications</title><author>Kempes, Christopher P. ; Follows, Michael J. ; Smith, Hillary ; Graham, Heather ; House, Christopher H. ; Levin, Simon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrobiology</topic><topic>Biogeochemistry</topic><topic>Cell Biology</topic><topic>Exobiology</topic><topic>In situ measurement</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oceans</topic><topic>Physiology</topic><topic>Space missions</topic><topic>Special Issue: Celebrating J. D. Murray</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kempes, Christopher P.</creatorcontrib><creatorcontrib>Follows, Michael J.</creatorcontrib><creatorcontrib>Smith, Hillary</creatorcontrib><creatorcontrib>Graham, Heather</creatorcontrib><creatorcontrib>House, Christopher H.</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kempes, Christopher P.</au><au>Follows, Michael J.</au><au>Smith, Hillary</au><au>Graham, Heather</au><au>House, Christopher H.</au><au>Levin, Simon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>83</volume><issue>7</issue><spage>73</spage><epage>73</epage><pages>73-73</pages><artnum>73</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay ( 2008 ). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth’s oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958 ; Geider and La Roche 2002 ; Eighty years of Redfield 2014 ). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012 , 2016 , 2017 , 2019 ) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made—particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry—and develop our theory in connection with these often deployed measurements.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34008062</pmid><doi>10.1007/s11538-021-00877-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2021-07, Vol.83 (7), p.73-73, Article 73
issn 0092-8240
1522-9602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8131296
source Springer Nature
subjects Astrobiology
Biogeochemistry
Cell Biology
Exobiology
In situ measurement
Life Sciences
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Oceans
Physiology
Space missions
Special Issue: Celebrating J. D. Murray
Stoichiometry
title Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Stoichiometry%20and%20Biogeochemistry%20for%20Astrobiological%20Applications&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Kempes,%20Christopher%20P.&rft.date=2021-07-01&rft.volume=83&rft.issue=7&rft.spage=73&rft.epage=73&rft.pages=73-73&rft.artnum=73&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-021-00877-5&rft_dat=%3Cproquest_pubme%3E2528843205%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-11aae03f0e4286c401e24c11fdd0742bfc63893e0eab5e2cc20722c695c12f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528843205&rft_id=info:pmid/34008062&rfr_iscdi=true