Loading…
Optical switching of topological phase in a perovskite polariton lattice
A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature. Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with...
Saved in:
Published in: | Science advances 2021-05, Vol.7 (21) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933 |
container_end_page | |
container_issue | 21 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Su, Rui Ghosh, Sanjib Liew, Timothy C. H. Xiong, Qihua |
description | A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature.
Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching. |
doi_str_mv | 10.1126/sciadv.abf8049 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531242080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</originalsourceid><addsrcrecordid>eNpVkU1LAzEURYMoVmq3rrN005rPmWQjSFErFLrRdchk3rTR6WRM0or_3tEW0dW7cC7nLS5CV5TMKGXFTXLe1vuZrRpFhD5BF4yXcsqkUKd_8ghNUnolhFBRFJLqczTigjCipbxAi1WfvbMtTh8-u43v1jg0OIc-tGH9A_qNTYB9hy3uIYZ9evMZ8MBt9Dl0uLV5MMAlOmtsm2ByvGP08nD_PF9Ml6vHp_ndcup4UeapFA0BIVmjJasqxUkpHa-EqAVIpgoOhdaOMi01ByJIZZWsmKK25lyUSnM-RrcHb7-rtlA76HK0remj39r4aYL15j_p_Masw94oyrVUahBcHwUxvO8gZbP1yUHb2g7CLhkmOWWCEUWG6uxQdTGkFKH5fUOJ-V7AHBYwxwX4F-HtekY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531242080</pqid></control><display><type>article</type><title>Optical switching of topological phase in a perovskite polariton lattice</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Su, Rui ; Ghosh, Sanjib ; Liew, Timothy C. H. ; Xiong, Qihua</creator><creatorcontrib>Su, Rui ; Ghosh, Sanjib ; Liew, Timothy C. H. ; Xiong, Qihua</creatorcontrib><description>A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature.
Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abf8049</identifier><identifier>PMID: 34020955</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2021-05, Vol.7 (21)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</citedby><cites>FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</cites><orcidid>0000-0003-2568-7294 ; 0000-0002-2555-4363 ; 0000-0002-2808-0327 ; 0000-0002-5014-9466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27898,27899,53763,53765</link.rule.ids></links><search><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Ghosh, Sanjib</creatorcontrib><creatorcontrib>Liew, Timothy C. H.</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><title>Optical switching of topological phase in a perovskite polariton lattice</title><title>Science advances</title><description>A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature.
Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.</description><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEURYMoVmq3rrN005rPmWQjSFErFLrRdchk3rTR6WRM0or_3tEW0dW7cC7nLS5CV5TMKGXFTXLe1vuZrRpFhD5BF4yXcsqkUKd_8ghNUnolhFBRFJLqczTigjCipbxAi1WfvbMtTh8-u43v1jg0OIc-tGH9A_qNTYB9hy3uIYZ9evMZ8MBt9Dl0uLV5MMAlOmtsm2ByvGP08nD_PF9Ml6vHp_ndcup4UeapFA0BIVmjJasqxUkpHa-EqAVIpgoOhdaOMi01ByJIZZWsmKK25lyUSnM-RrcHb7-rtlA76HK0remj39r4aYL15j_p_Masw94oyrVUahBcHwUxvO8gZbP1yUHb2g7CLhkmOWWCEUWG6uxQdTGkFKH5fUOJ-V7AHBYwxwX4F-HtekY</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Su, Rui</creator><creator>Ghosh, Sanjib</creator><creator>Liew, Timothy C. H.</creator><creator>Xiong, Qihua</creator><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2568-7294</orcidid><orcidid>https://orcid.org/0000-0002-2555-4363</orcidid><orcidid>https://orcid.org/0000-0002-2808-0327</orcidid><orcidid>https://orcid.org/0000-0002-5014-9466</orcidid></search><sort><creationdate>20210501</creationdate><title>Optical switching of topological phase in a perovskite polariton lattice</title><author>Su, Rui ; Ghosh, Sanjib ; Liew, Timothy C. H. ; Xiong, Qihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Ghosh, Sanjib</creatorcontrib><creatorcontrib>Liew, Timothy C. H.</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Rui</au><au>Ghosh, Sanjib</au><au>Liew, Timothy C. H.</au><au>Xiong, Qihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical switching of topological phase in a perovskite polariton lattice</atitle><jtitle>Science advances</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>7</volume><issue>21</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature.
Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.</abstract><pub>American Association for the Advancement of Science</pub><pmid>34020955</pmid><doi>10.1126/sciadv.abf8049</doi><orcidid>https://orcid.org/0000-0003-2568-7294</orcidid><orcidid>https://orcid.org/0000-0002-2555-4363</orcidid><orcidid>https://orcid.org/0000-0002-2808-0327</orcidid><orcidid>https://orcid.org/0000-0002-5014-9466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-05, Vol.7 (21) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139588 |
source | American Association for the Advancement of Science; PMC (PubMed Central) |
subjects | Physics SciAdv r-articles |
title | Optical switching of topological phase in a perovskite polariton lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T07%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20switching%20of%20topological%20phase%20in%20a%20perovskite%20polariton%20lattice&rft.jtitle=Science%20advances&rft.au=Su,%20Rui&rft.date=2021-05-01&rft.volume=7&rft.issue=21&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abf8049&rft_dat=%3Cproquest_pubme%3E2531242080%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531242080&rft_id=info:pmid/34020955&rfr_iscdi=true |