Loading…

Optical switching of topological phase in a perovskite polariton lattice

A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature. Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-05, Vol.7 (21)
Main Authors: Su, Rui, Ghosh, Sanjib, Liew, Timothy C. H., Xiong, Qihua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933
cites cdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933
container_end_page
container_issue 21
container_start_page
container_title Science advances
container_volume 7
creator Su, Rui
Ghosh, Sanjib
Liew, Timothy C. H.
Xiong, Qihua
description A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature. Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.
doi_str_mv 10.1126/sciadv.abf8049
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531242080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</originalsourceid><addsrcrecordid>eNpVkU1LAzEURYMoVmq3rrN005rPmWQjSFErFLrRdchk3rTR6WRM0or_3tEW0dW7cC7nLS5CV5TMKGXFTXLe1vuZrRpFhD5BF4yXcsqkUKd_8ghNUnolhFBRFJLqczTigjCipbxAi1WfvbMtTh8-u43v1jg0OIc-tGH9A_qNTYB9hy3uIYZ9evMZ8MBt9Dl0uLV5MMAlOmtsm2ByvGP08nD_PF9Ml6vHp_ndcup4UeapFA0BIVmjJasqxUkpHa-EqAVIpgoOhdaOMi01ByJIZZWsmKK25lyUSnM-RrcHb7-rtlA76HK0remj39r4aYL15j_p_Masw94oyrVUahBcHwUxvO8gZbP1yUHb2g7CLhkmOWWCEUWG6uxQdTGkFKH5fUOJ-V7AHBYwxwX4F-HtekY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531242080</pqid></control><display><type>article</type><title>Optical switching of topological phase in a perovskite polariton lattice</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Su, Rui ; Ghosh, Sanjib ; Liew, Timothy C. H. ; Xiong, Qihua</creator><creatorcontrib>Su, Rui ; Ghosh, Sanjib ; Liew, Timothy C. H. ; Xiong, Qihua</creatorcontrib><description>A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature. Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abf8049</identifier><identifier>PMID: 34020955</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2021-05, Vol.7 (21)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</citedby><cites>FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</cites><orcidid>0000-0003-2568-7294 ; 0000-0002-2555-4363 ; 0000-0002-2808-0327 ; 0000-0002-5014-9466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27898,27899,53763,53765</link.rule.ids></links><search><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Ghosh, Sanjib</creatorcontrib><creatorcontrib>Liew, Timothy C. H.</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><title>Optical switching of topological phase in a perovskite polariton lattice</title><title>Science advances</title><description>A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature. Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.</description><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEURYMoVmq3rrN005rPmWQjSFErFLrRdchk3rTR6WRM0or_3tEW0dW7cC7nLS5CV5TMKGXFTXLe1vuZrRpFhD5BF4yXcsqkUKd_8ghNUnolhFBRFJLqczTigjCipbxAi1WfvbMtTh8-u43v1jg0OIc-tGH9A_qNTYB9hy3uIYZ9evMZ8MBt9Dl0uLV5MMAlOmtsm2ByvGP08nD_PF9Ml6vHp_ndcup4UeapFA0BIVmjJasqxUkpHa-EqAVIpgoOhdaOMi01ByJIZZWsmKK25lyUSnM-RrcHb7-rtlA76HK0remj39r4aYL15j_p_Masw94oyrVUahBcHwUxvO8gZbP1yUHb2g7CLhkmOWWCEUWG6uxQdTGkFKH5fUOJ-V7AHBYwxwX4F-HtekY</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Su, Rui</creator><creator>Ghosh, Sanjib</creator><creator>Liew, Timothy C. H.</creator><creator>Xiong, Qihua</creator><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2568-7294</orcidid><orcidid>https://orcid.org/0000-0002-2555-4363</orcidid><orcidid>https://orcid.org/0000-0002-2808-0327</orcidid><orcidid>https://orcid.org/0000-0002-5014-9466</orcidid></search><sort><creationdate>20210501</creationdate><title>Optical switching of topological phase in a perovskite polariton lattice</title><author>Su, Rui ; Ghosh, Sanjib ; Liew, Timothy C. H. ; Xiong, Qihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Ghosh, Sanjib</creatorcontrib><creatorcontrib>Liew, Timothy C. H.</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Rui</au><au>Ghosh, Sanjib</au><au>Liew, Timothy C. H.</au><au>Xiong, Qihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical switching of topological phase in a perovskite polariton lattice</atitle><jtitle>Science advances</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>7</volume><issue>21</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A perovskite exciton polariton topological insulator allows polarization-dependent topological phases at room temperature. Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.</abstract><pub>American Association for the Advancement of Science</pub><pmid>34020955</pmid><doi>10.1126/sciadv.abf8049</doi><orcidid>https://orcid.org/0000-0003-2568-7294</orcidid><orcidid>https://orcid.org/0000-0002-2555-4363</orcidid><orcidid>https://orcid.org/0000-0002-2808-0327</orcidid><orcidid>https://orcid.org/0000-0002-5014-9466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-05, Vol.7 (21)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139588
source American Association for the Advancement of Science; PMC (PubMed Central)
subjects Physics
SciAdv r-articles
title Optical switching of topological phase in a perovskite polariton lattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T07%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20switching%20of%20topological%20phase%20in%20a%20perovskite%20polariton%20lattice&rft.jtitle=Science%20advances&rft.au=Su,%20Rui&rft.date=2021-05-01&rft.volume=7&rft.issue=21&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abf8049&rft_dat=%3Cproquest_pubme%3E2531242080%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-54f0e452f952bb83075c3b44d4e52863e699c129593e040ba85b281ad33478933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531242080&rft_id=info:pmid/34020955&rfr_iscdi=true