Loading…
Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging
The brain functions through coordinated activity among distributed regions. Wide-field calcium imaging, combined with improved genetically encoded calcium indicators, allows sufficient signal-to-noise ratio and spatiotemporal resolution to afford a unique opportunity to capture cortex-wide dynamics...
Saved in:
Published in: | The Journal of neuroscience 2021-05, Vol.41 (19), p.4160-4168 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The brain functions through coordinated activity among distributed regions. Wide-field calcium imaging, combined with improved genetically encoded calcium indicators, allows sufficient signal-to-noise ratio and spatiotemporal resolution to afford a unique opportunity to capture cortex-wide dynamics on a moment-by-moment basis in behaving animals. Recent applications of this approach have been uncovering cortical dynamics at unprecedented scales during various cognitive processes, ranging from relatively simple sensorimotor integration to more complex decision-making tasks. In this review, we will highlight recent scientific advances enabled by wide-field calcium imaging in behaving mice. We then summarize several technical considerations and future opportunities for wide-field imaging to uncover large-scale circuit dynamics. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.3003-20.2021 |