Loading…
Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study
Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be...
Saved in:
Published in: | BioMed research international 2021, Vol.2021 (1), p.5542595-5542595 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323 |
container_end_page | 5542595 |
container_issue | 1 |
container_start_page | 5542595 |
container_title | BioMed research international |
container_volume | 2021 |
creator | Ling, Qinjie Zhang, Huanliang He, Erxing |
description | Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF. |
doi_str_mv | 10.1155/2021/5542595 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683591837</galeid><sourcerecordid>A683591837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</originalsourceid><addsrcrecordid>eNp9kk1rFDEYgINYbFl78ywBLxUdm0w-JvEgLKWrCwN7qN6EkMlk2pSZpCYz1v33ZtjtantoLknIw_N-5AXgDUafMGbsvEQlPmeMlkyyF-CkJJgWHFP88nAm5BicpnSL8hKYI8lfgWNCEWNS4BPw88pEe5_gyv3RowsediHCTdO7X5OFtR5t1D2sp6HREa59vjah3cLVlGb2bFMX9Xr1_jNcZoF3o4WXvR2sH-HVOLXb1-Co032yp_t9AX6sLr9ffCvqzdf1xbIuDEN0LKpGS9saoTnqOLaY4JZJQ5uuKSttOtkJYyyRlUWioZxUlSSmsZp3LbMVIyVZgC87793UDNmUE8hpq7voBh23KminHr94d6Ouw28lMK1YVi7A2V4QQy48jWpwydi-196GKamSEYZzy6o51rsn6G2Yos_lzRSlJWGy-kdd694q57uQ45pZqpZcciEFEuXzlMgiLMjs-rijTAwpRdsdCsNIzVOg5ilQ-ynI-Nv_m3GAH_48Ax92wI3zrb53z-v-Apf_tnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534423597</pqid></control><display><type>article</type><title>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Ling, Qinjie ; Zhang, Huanliang ; He, Erxing</creator><contributor>Zhang, Ying-Qi ; Ying-Qi Zhang</contributor><creatorcontrib>Ling, Qinjie ; Zhang, Huanliang ; He, Erxing ; Zhang, Ying-Qi ; Ying-Qi Zhang</creatorcontrib><description>Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2021/5542595</identifier><identifier>PMID: 34055981</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Analysis ; Back surgery ; Biomechanical Phenomena - physiology ; Biomechanics ; Bone implants ; Bone Screws ; Cages ; Care and treatment ; Cortical Bone ; Degeneration ; Displacement ; Endoscopy ; Finite Element Analysis ; Finite element method ; Fixation ; Humans ; Ligaments ; Lumbar curve ; Lumbosacral Region - surgery ; Mathematical models ; Patient outcomes ; Range of Motion, Articular - physiology ; Rotation ; Spinal Cord ; Spinal diseases ; Spinal fusion ; Spinal Fusion - methods ; Stability ; Stress, Mechanical ; Vertebrae ; Yield stress</subject><ispartof>BioMed research international, 2021, Vol.2021 (1), p.5542595-5542595</ispartof><rights>Copyright © 2021 Qinjie Ling et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Qinjie Ling et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Qinjie Ling et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</citedby><cites>FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</cites><orcidid>0000-0003-4475-9169 ; 0000-0002-7914-2030 ; 0000-0003-1821-590X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534423597/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534423597?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4022,25752,27922,27923,27924,37011,37012,44589,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34055981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Ying-Qi</contributor><contributor>Ying-Qi Zhang</contributor><creatorcontrib>Ling, Qinjie</creatorcontrib><creatorcontrib>Zhang, Huanliang</creatorcontrib><creatorcontrib>He, Erxing</creatorcontrib><title>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.</description><subject>Analysis</subject><subject>Back surgery</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>Bone implants</subject><subject>Bone Screws</subject><subject>Cages</subject><subject>Care and treatment</subject><subject>Cortical Bone</subject><subject>Degeneration</subject><subject>Displacement</subject><subject>Endoscopy</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fixation</subject><subject>Humans</subject><subject>Ligaments</subject><subject>Lumbar curve</subject><subject>Lumbosacral Region - surgery</subject><subject>Mathematical models</subject><subject>Patient outcomes</subject><subject>Range of Motion, Articular - physiology</subject><subject>Rotation</subject><subject>Spinal Cord</subject><subject>Spinal diseases</subject><subject>Spinal fusion</subject><subject>Spinal Fusion - methods</subject><subject>Stability</subject><subject>Stress, Mechanical</subject><subject>Vertebrae</subject><subject>Yield stress</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kk1rFDEYgINYbFl78ywBLxUdm0w-JvEgLKWrCwN7qN6EkMlk2pSZpCYz1v33ZtjtantoLknIw_N-5AXgDUafMGbsvEQlPmeMlkyyF-CkJJgWHFP88nAm5BicpnSL8hKYI8lfgWNCEWNS4BPw88pEe5_gyv3RowsediHCTdO7X5OFtR5t1D2sp6HREa59vjah3cLVlGb2bFMX9Xr1_jNcZoF3o4WXvR2sH-HVOLXb1-Co032yp_t9AX6sLr9ffCvqzdf1xbIuDEN0LKpGS9saoTnqOLaY4JZJQ5uuKSttOtkJYyyRlUWioZxUlSSmsZp3LbMVIyVZgC87793UDNmUE8hpq7voBh23KminHr94d6Ouw28lMK1YVi7A2V4QQy48jWpwydi-196GKamSEYZzy6o51rsn6G2Yos_lzRSlJWGy-kdd694q57uQ45pZqpZcciEFEuXzlMgiLMjs-rijTAwpRdsdCsNIzVOg5ilQ-ynI-Nv_m3GAH_48Ax92wI3zrb53z-v-Apf_tnQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ling, Qinjie</creator><creator>Zhang, Huanliang</creator><creator>He, Erxing</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4475-9169</orcidid><orcidid>https://orcid.org/0000-0002-7914-2030</orcidid><orcidid>https://orcid.org/0000-0003-1821-590X</orcidid></search><sort><creationdate>2021</creationdate><title>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</title><author>Ling, Qinjie ; Zhang, Huanliang ; He, Erxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Back surgery</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>Bone implants</topic><topic>Bone Screws</topic><topic>Cages</topic><topic>Care and treatment</topic><topic>Cortical Bone</topic><topic>Degeneration</topic><topic>Displacement</topic><topic>Endoscopy</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fixation</topic><topic>Humans</topic><topic>Ligaments</topic><topic>Lumbar curve</topic><topic>Lumbosacral Region - surgery</topic><topic>Mathematical models</topic><topic>Patient outcomes</topic><topic>Range of Motion, Articular - physiology</topic><topic>Rotation</topic><topic>Spinal Cord</topic><topic>Spinal diseases</topic><topic>Spinal fusion</topic><topic>Spinal Fusion - methods</topic><topic>Stability</topic><topic>Stress, Mechanical</topic><topic>Vertebrae</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Qinjie</creatorcontrib><creatorcontrib>Zhang, Huanliang</creatorcontrib><creatorcontrib>He, Erxing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Qinjie</au><au>Zhang, Huanliang</au><au>He, Erxing</au><au>Zhang, Ying-Qi</au><au>Ying-Qi Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>5542595</spage><epage>5542595</epage><pages>5542595-5542595</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34055981</pmid><doi>10.1155/2021/5542595</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4475-9169</orcidid><orcidid>https://orcid.org/0000-0002-7914-2030</orcidid><orcidid>https://orcid.org/0000-0003-1821-590X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2021, Vol.2021 (1), p.5542595-5542595 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147546 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Analysis Back surgery Biomechanical Phenomena - physiology Biomechanics Bone implants Bone Screws Cages Care and treatment Cortical Bone Degeneration Displacement Endoscopy Finite Element Analysis Finite element method Fixation Humans Ligaments Lumbar curve Lumbosacral Region - surgery Mathematical models Patient outcomes Range of Motion, Articular - physiology Rotation Spinal Cord Spinal diseases Spinal fusion Spinal Fusion - methods Stability Stress, Mechanical Vertebrae Yield stress |
title | Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screws%20Fixation%20for%20Oblique%20Lateral%20Lumbar%20Interbody%20Fusion%20(OL-LIF):%20A%20Finite%20Element%20Study&rft.jtitle=BioMed%20research%20international&rft.au=Ling,%20Qinjie&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=5542595&rft.epage=5542595&rft.pages=5542595-5542595&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2021/5542595&rft_dat=%3Cgale_pubme%3EA683591837%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534423597&rft_id=info:pmid/34055981&rft_galeid=A683591837&rfr_iscdi=true |