Loading…

Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study

Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2021, Vol.2021 (1), p.5542595-5542595
Main Authors: Ling, Qinjie, Zhang, Huanliang, He, Erxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323
cites cdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323
container_end_page 5542595
container_issue 1
container_start_page 5542595
container_title BioMed research international
container_volume 2021
creator Ling, Qinjie
Zhang, Huanliang
He, Erxing
description Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.
doi_str_mv 10.1155/2021/5542595
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683591837</galeid><sourcerecordid>A683591837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</originalsourceid><addsrcrecordid>eNp9kk1rFDEYgINYbFl78ywBLxUdm0w-JvEgLKWrCwN7qN6EkMlk2pSZpCYz1v33ZtjtantoLknIw_N-5AXgDUafMGbsvEQlPmeMlkyyF-CkJJgWHFP88nAm5BicpnSL8hKYI8lfgWNCEWNS4BPw88pEe5_gyv3RowsediHCTdO7X5OFtR5t1D2sp6HREa59vjah3cLVlGb2bFMX9Xr1_jNcZoF3o4WXvR2sH-HVOLXb1-Co032yp_t9AX6sLr9ffCvqzdf1xbIuDEN0LKpGS9saoTnqOLaY4JZJQ5uuKSttOtkJYyyRlUWioZxUlSSmsZp3LbMVIyVZgC87793UDNmUE8hpq7voBh23KminHr94d6Ouw28lMK1YVi7A2V4QQy48jWpwydi-196GKamSEYZzy6o51rsn6G2Yos_lzRSlJWGy-kdd694q57uQ45pZqpZcciEFEuXzlMgiLMjs-rijTAwpRdsdCsNIzVOg5ilQ-ynI-Nv_m3GAH_48Ax92wI3zrb53z-v-Apf_tnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534423597</pqid></control><display><type>article</type><title>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Ling, Qinjie ; Zhang, Huanliang ; He, Erxing</creator><contributor>Zhang, Ying-Qi ; Ying-Qi Zhang</contributor><creatorcontrib>Ling, Qinjie ; Zhang, Huanliang ; He, Erxing ; Zhang, Ying-Qi ; Ying-Qi Zhang</creatorcontrib><description>Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2021/5542595</identifier><identifier>PMID: 34055981</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Analysis ; Back surgery ; Biomechanical Phenomena - physiology ; Biomechanics ; Bone implants ; Bone Screws ; Cages ; Care and treatment ; Cortical Bone ; Degeneration ; Displacement ; Endoscopy ; Finite Element Analysis ; Finite element method ; Fixation ; Humans ; Ligaments ; Lumbar curve ; Lumbosacral Region - surgery ; Mathematical models ; Patient outcomes ; Range of Motion, Articular - physiology ; Rotation ; Spinal Cord ; Spinal diseases ; Spinal fusion ; Spinal Fusion - methods ; Stability ; Stress, Mechanical ; Vertebrae ; Yield stress</subject><ispartof>BioMed research international, 2021, Vol.2021 (1), p.5542595-5542595</ispartof><rights>Copyright © 2021 Qinjie Ling et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Qinjie Ling et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Qinjie Ling et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</citedby><cites>FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</cites><orcidid>0000-0003-4475-9169 ; 0000-0002-7914-2030 ; 0000-0003-1821-590X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534423597/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534423597?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4022,25752,27922,27923,27924,37011,37012,44589,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34055981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Ying-Qi</contributor><contributor>Ying-Qi Zhang</contributor><creatorcontrib>Ling, Qinjie</creatorcontrib><creatorcontrib>Zhang, Huanliang</creatorcontrib><creatorcontrib>He, Erxing</creatorcontrib><title>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.</description><subject>Analysis</subject><subject>Back surgery</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>Bone implants</subject><subject>Bone Screws</subject><subject>Cages</subject><subject>Care and treatment</subject><subject>Cortical Bone</subject><subject>Degeneration</subject><subject>Displacement</subject><subject>Endoscopy</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fixation</subject><subject>Humans</subject><subject>Ligaments</subject><subject>Lumbar curve</subject><subject>Lumbosacral Region - surgery</subject><subject>Mathematical models</subject><subject>Patient outcomes</subject><subject>Range of Motion, Articular - physiology</subject><subject>Rotation</subject><subject>Spinal Cord</subject><subject>Spinal diseases</subject><subject>Spinal fusion</subject><subject>Spinal Fusion - methods</subject><subject>Stability</subject><subject>Stress, Mechanical</subject><subject>Vertebrae</subject><subject>Yield stress</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kk1rFDEYgINYbFl78ywBLxUdm0w-JvEgLKWrCwN7qN6EkMlk2pSZpCYz1v33ZtjtantoLknIw_N-5AXgDUafMGbsvEQlPmeMlkyyF-CkJJgWHFP88nAm5BicpnSL8hKYI8lfgWNCEWNS4BPw88pEe5_gyv3RowsediHCTdO7X5OFtR5t1D2sp6HREa59vjah3cLVlGb2bFMX9Xr1_jNcZoF3o4WXvR2sH-HVOLXb1-Co032yp_t9AX6sLr9ffCvqzdf1xbIuDEN0LKpGS9saoTnqOLaY4JZJQ5uuKSttOtkJYyyRlUWioZxUlSSmsZp3LbMVIyVZgC87793UDNmUE8hpq7voBh23KminHr94d6Ouw28lMK1YVi7A2V4QQy48jWpwydi-196GKamSEYZzy6o51rsn6G2Yos_lzRSlJWGy-kdd694q57uQ45pZqpZcciEFEuXzlMgiLMjs-rijTAwpRdsdCsNIzVOg5ilQ-ynI-Nv_m3GAH_48Ax92wI3zrb53z-v-Apf_tnQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ling, Qinjie</creator><creator>Zhang, Huanliang</creator><creator>He, Erxing</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4475-9169</orcidid><orcidid>https://orcid.org/0000-0002-7914-2030</orcidid><orcidid>https://orcid.org/0000-0003-1821-590X</orcidid></search><sort><creationdate>2021</creationdate><title>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</title><author>Ling, Qinjie ; Zhang, Huanliang ; He, Erxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Back surgery</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>Bone implants</topic><topic>Bone Screws</topic><topic>Cages</topic><topic>Care and treatment</topic><topic>Cortical Bone</topic><topic>Degeneration</topic><topic>Displacement</topic><topic>Endoscopy</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fixation</topic><topic>Humans</topic><topic>Ligaments</topic><topic>Lumbar curve</topic><topic>Lumbosacral Region - surgery</topic><topic>Mathematical models</topic><topic>Patient outcomes</topic><topic>Range of Motion, Articular - physiology</topic><topic>Rotation</topic><topic>Spinal Cord</topic><topic>Spinal diseases</topic><topic>Spinal fusion</topic><topic>Spinal Fusion - methods</topic><topic>Stability</topic><topic>Stress, Mechanical</topic><topic>Vertebrae</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Qinjie</creatorcontrib><creatorcontrib>Zhang, Huanliang</creatorcontrib><creatorcontrib>He, Erxing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Qinjie</au><au>Zhang, Huanliang</au><au>He, Erxing</au><au>Zhang, Ying-Qi</au><au>Ying-Qi Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>5542595</spage><epage>5542595</epage><pages>5542595-5542595</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. The combination of screw fixation and cage can provide stability in lumbar interbody fusion (LIF), which is an important technique to treat lumbar degeneration diseases. As the narrow surface cage is developed in oblique lateral lumbar interbody fusion (OL-LIF), screw fixation should be improved at the same time. We used the finite element (FE) method to investigate the biomechanics response by three different ways of screw fixation in OL-LIF. Methods. Using a validated FE model, OL-LIF with 3 different screw fixations was simulated, including percutaneous transverterbral screw (PTVS) fixation, percutaneous cortical bone trajectory screw (PCBTS) fixation, and percutaneous transpedical screw (PPS) fixation. Range of motion (ROM), vertebral body displacement, cage displacement, cage stress, cortical bone stress, and screw stress were compared. Results. ROM in FE models significantly decreased by 84-89% in flexion, 91-93% in extension, 78-89% in right and left lateral bending, and 73-82% in right and left axial rotation compared to the original model. The maximum displacement of the vertebral body and the cage in six motions except for the extension of model PTVS was the smallest among models. Meanwhile, the model PTVS had the higher stress of screw-rods system and also the lowest stress of cage. In all moments, the maximum stresses of the cages were lower than their yield stress. Conclusions. Three screw fixations can highly restrict the surgical functional spinal unit (FSU). PTVS provided the better stability than the other two screw fixations. It may be a good choice for OL-LIF.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34055981</pmid><doi>10.1155/2021/5542595</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4475-9169</orcidid><orcidid>https://orcid.org/0000-0002-7914-2030</orcidid><orcidid>https://orcid.org/0000-0003-1821-590X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2021, Vol.2021 (1), p.5542595-5542595
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147546
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Analysis
Back surgery
Biomechanical Phenomena - physiology
Biomechanics
Bone implants
Bone Screws
Cages
Care and treatment
Cortical Bone
Degeneration
Displacement
Endoscopy
Finite Element Analysis
Finite element method
Fixation
Humans
Ligaments
Lumbar curve
Lumbosacral Region - surgery
Mathematical models
Patient outcomes
Range of Motion, Articular - physiology
Rotation
Spinal Cord
Spinal diseases
Spinal fusion
Spinal Fusion - methods
Stability
Stress, Mechanical
Vertebrae
Yield stress
title Screws Fixation for Oblique Lateral Lumbar Interbody Fusion (OL-LIF): A Finite Element Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screws%20Fixation%20for%20Oblique%20Lateral%20Lumbar%20Interbody%20Fusion%20(OL-LIF):%20A%20Finite%20Element%20Study&rft.jtitle=BioMed%20research%20international&rft.au=Ling,%20Qinjie&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=5542595&rft.epage=5542595&rft.pages=5542595-5542595&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2021/5542595&rft_dat=%3Cgale_pubme%3EA683591837%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-7ba9edc8a60f61e131d59c4bfb27acf9f8cce397e08b4637793cbea6fd5e75323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534423597&rft_id=info:pmid/34055981&rft_galeid=A683591837&rfr_iscdi=true