Loading…

About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites

The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well a...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-05, Vol.14 (10), p.2564
Main Authors: Pohl, Philip Manuel, Kümmel, Frank, Schunk, Christopher, Serrano-Munoz, Itziar, Markötter, Henning, Göken, Mathias, Höppel, Heinz Werner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3
cites cdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3
container_end_page
container_issue 10
container_start_page 2564
container_title Materials
container_volume 14
creator Pohl, Philip Manuel
Kümmel, Frank
Schunk, Christopher
Serrano-Munoz, Itziar
Markötter, Henning
Göken, Mathias
Höppel, Heinz Werner
description The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.
doi_str_mv 10.3390/ma14102564
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8156659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536480470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVJaEKSl_4CQV9KYBPJI2ull0BYmgtsSCnta8VYHm-U2tZWkgv993EuJG3nZYY5H4cZDmMfpDgBsOJ0QKmkqGqt3rF9aa1eSKvUzl_zHjvK-V7MBSBNZd-zPVBC28rAPvtx3sSp8HJH_GvsiceOX4-FUoeeMo_jk3KBJWwm4quE_if_kuIWN_NqVsPI1ziEEQu1_IYK9n3wfBWHbcyhUD5kux32mY5e-gH7fvH52-pqsb69vF6drxceDJSFbrq6tUaIRkhT2wZ8BahMZyQYa1pUYBojl6ozptMAmhQKha32sLQEdQMH7OzZdzs1A7WexpKwd9sUBkx_XMTg_lXGcOc28bczsta6trPBpxeDFH9NlIsbQvbU9zhSnLKratDKCLUUM_rxP_Q-Tmmc33ukKq3E8snw-JnyKeacqHs9Rgr3mJx7Sw4eANySiNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532640759</pqid></control><display><type>article</type><title>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Pohl, Philip Manuel ; Kümmel, Frank ; Schunk, Christopher ; Serrano-Munoz, Itziar ; Markötter, Henning ; Göken, Mathias ; Höppel, Heinz Werner</creator><creatorcontrib>Pohl, Philip Manuel ; Kümmel, Frank ; Schunk, Christopher ; Serrano-Munoz, Itziar ; Markötter, Henning ; Göken, Mathias ; Höppel, Heinz Werner</creatorcontrib><description>The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14102564</identifier><identifier>PMID: 34069283</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Composite materials ; Computed tomography ; Constituents ; Crack bridging ; Crack initiation ; Crack propagation ; Cyclic loads ; Damage tolerance ; Deflection ; Dissimilar materials ; Dissimilar metals ; Elastic properties ; Fatigue failure ; High cycle fatigue ; Interfaces ; Laminates ; Low cycle fatigue ; Mechanical properties ; Metal fatigue ; Modulus of elasticity ; Monolithic materials ; Numerical analysis ; Propagation ; Stress propagation ; Synchrotron radiation ; Synchrotrons ; Titanium ; Yield strength ; Yield stress</subject><ispartof>Materials, 2021-05, Vol.14 (10), p.2564</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</citedby><cites>FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</cites><orcidid>0000-0003-1375-6862 ; 0000-0001-7983-0928 ; 0000-0003-3464-6793 ; 0000-0002-8688-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532640759/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532640759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Pohl, Philip Manuel</creatorcontrib><creatorcontrib>Kümmel, Frank</creatorcontrib><creatorcontrib>Schunk, Christopher</creatorcontrib><creatorcontrib>Serrano-Munoz, Itziar</creatorcontrib><creatorcontrib>Markötter, Henning</creatorcontrib><creatorcontrib>Göken, Mathias</creatorcontrib><creatorcontrib>Höppel, Heinz Werner</creatorcontrib><title>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</title><title>Materials</title><description>The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.</description><subject>Aluminum</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Constituents</subject><subject>Crack bridging</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>Damage tolerance</subject><subject>Deflection</subject><subject>Dissimilar materials</subject><subject>Dissimilar metals</subject><subject>Elastic properties</subject><subject>Fatigue failure</subject><subject>High cycle fatigue</subject><subject>Interfaces</subject><subject>Laminates</subject><subject>Low cycle fatigue</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Modulus of elasticity</subject><subject>Monolithic materials</subject><subject>Numerical analysis</subject><subject>Propagation</subject><subject>Stress propagation</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Titanium</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVtr3DAQhUVJaEKSl_4CQV9KYBPJI2ull0BYmgtsSCnta8VYHm-U2tZWkgv993EuJG3nZYY5H4cZDmMfpDgBsOJ0QKmkqGqt3rF9aa1eSKvUzl_zHjvK-V7MBSBNZd-zPVBC28rAPvtx3sSp8HJH_GvsiceOX4-FUoeeMo_jk3KBJWwm4quE_if_kuIWN_NqVsPI1ziEEQu1_IYK9n3wfBWHbcyhUD5kux32mY5e-gH7fvH52-pqsb69vF6drxceDJSFbrq6tUaIRkhT2wZ8BahMZyQYa1pUYBojl6ozptMAmhQKha32sLQEdQMH7OzZdzs1A7WexpKwd9sUBkx_XMTg_lXGcOc28bczsta6trPBpxeDFH9NlIsbQvbU9zhSnLKratDKCLUUM_rxP_Q-Tmmc33ukKq3E8snw-JnyKeacqHs9Rgr3mJx7Sw4eANySiNY</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Pohl, Philip Manuel</creator><creator>Kümmel, Frank</creator><creator>Schunk, Christopher</creator><creator>Serrano-Munoz, Itziar</creator><creator>Markötter, Henning</creator><creator>Göken, Mathias</creator><creator>Höppel, Heinz Werner</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1375-6862</orcidid><orcidid>https://orcid.org/0000-0001-7983-0928</orcidid><orcidid>https://orcid.org/0000-0003-3464-6793</orcidid><orcidid>https://orcid.org/0000-0002-8688-3865</orcidid></search><sort><creationdate>20210514</creationdate><title>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</title><author>Pohl, Philip Manuel ; Kümmel, Frank ; Schunk, Christopher ; Serrano-Munoz, Itziar ; Markötter, Henning ; Göken, Mathias ; Höppel, Heinz Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Constituents</topic><topic>Crack bridging</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>Damage tolerance</topic><topic>Deflection</topic><topic>Dissimilar materials</topic><topic>Dissimilar metals</topic><topic>Elastic properties</topic><topic>Fatigue failure</topic><topic>High cycle fatigue</topic><topic>Interfaces</topic><topic>Laminates</topic><topic>Low cycle fatigue</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Modulus of elasticity</topic><topic>Monolithic materials</topic><topic>Numerical analysis</topic><topic>Propagation</topic><topic>Stress propagation</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Titanium</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pohl, Philip Manuel</creatorcontrib><creatorcontrib>Kümmel, Frank</creatorcontrib><creatorcontrib>Schunk, Christopher</creatorcontrib><creatorcontrib>Serrano-Munoz, Itziar</creatorcontrib><creatorcontrib>Markötter, Henning</creatorcontrib><creatorcontrib>Göken, Mathias</creatorcontrib><creatorcontrib>Höppel, Heinz Werner</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pohl, Philip Manuel</au><au>Kümmel, Frank</au><au>Schunk, Christopher</au><au>Serrano-Munoz, Itziar</au><au>Markötter, Henning</au><au>Göken, Mathias</au><au>Höppel, Heinz Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</atitle><jtitle>Materials</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>2564</spage><pages>2564-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34069283</pmid><doi>10.3390/ma14102564</doi><orcidid>https://orcid.org/0000-0003-1375-6862</orcidid><orcidid>https://orcid.org/0000-0001-7983-0928</orcidid><orcidid>https://orcid.org/0000-0003-3464-6793</orcidid><orcidid>https://orcid.org/0000-0002-8688-3865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-05, Vol.14 (10), p.2564
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8156659
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Aluminum
Composite materials
Computed tomography
Constituents
Crack bridging
Crack initiation
Crack propagation
Cyclic loads
Damage tolerance
Deflection
Dissimilar materials
Dissimilar metals
Elastic properties
Fatigue failure
High cycle fatigue
Interfaces
Laminates
Low cycle fatigue
Mechanical properties
Metal fatigue
Modulus of elasticity
Monolithic materials
Numerical analysis
Propagation
Stress propagation
Synchrotron radiation
Synchrotrons
Titanium
Yield strength
Yield stress
title About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20Role%20of%20Interfaces%20on%20the%20Fatigue%20Crack%20Propagation%20in%20Laminated%20Metallic%20Composites&rft.jtitle=Materials&rft.au=Pohl,%20Philip%20Manuel&rft.date=2021-05-14&rft.volume=14&rft.issue=10&rft.spage=2564&rft.pages=2564-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14102564&rft_dat=%3Cproquest_pubme%3E2536480470%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532640759&rft_id=info:pmid/34069283&rfr_iscdi=true