Loading…
About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites
The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well a...
Saved in:
Published in: | Materials 2021-05, Vol.14 (10), p.2564 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3 |
container_end_page | |
container_issue | 10 |
container_start_page | 2564 |
container_title | Materials |
container_volume | 14 |
creator | Pohl, Philip Manuel Kümmel, Frank Schunk, Christopher Serrano-Munoz, Itziar Markötter, Henning Göken, Mathias Höppel, Heinz Werner |
description | The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading. |
doi_str_mv | 10.3390/ma14102564 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8156659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536480470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVJaEKSl_4CQV9KYBPJI2ull0BYmgtsSCnta8VYHm-U2tZWkgv993EuJG3nZYY5H4cZDmMfpDgBsOJ0QKmkqGqt3rF9aa1eSKvUzl_zHjvK-V7MBSBNZd-zPVBC28rAPvtx3sSp8HJH_GvsiceOX4-FUoeeMo_jk3KBJWwm4quE_if_kuIWN_NqVsPI1ziEEQu1_IYK9n3wfBWHbcyhUD5kux32mY5e-gH7fvH52-pqsb69vF6drxceDJSFbrq6tUaIRkhT2wZ8BahMZyQYa1pUYBojl6ozptMAmhQKha32sLQEdQMH7OzZdzs1A7WexpKwd9sUBkx_XMTg_lXGcOc28bczsta6trPBpxeDFH9NlIsbQvbU9zhSnLKratDKCLUUM_rxP_Q-Tmmc33ukKq3E8snw-JnyKeacqHs9Rgr3mJx7Sw4eANySiNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532640759</pqid></control><display><type>article</type><title>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Pohl, Philip Manuel ; Kümmel, Frank ; Schunk, Christopher ; Serrano-Munoz, Itziar ; Markötter, Henning ; Göken, Mathias ; Höppel, Heinz Werner</creator><creatorcontrib>Pohl, Philip Manuel ; Kümmel, Frank ; Schunk, Christopher ; Serrano-Munoz, Itziar ; Markötter, Henning ; Göken, Mathias ; Höppel, Heinz Werner</creatorcontrib><description>The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14102564</identifier><identifier>PMID: 34069283</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Composite materials ; Computed tomography ; Constituents ; Crack bridging ; Crack initiation ; Crack propagation ; Cyclic loads ; Damage tolerance ; Deflection ; Dissimilar materials ; Dissimilar metals ; Elastic properties ; Fatigue failure ; High cycle fatigue ; Interfaces ; Laminates ; Low cycle fatigue ; Mechanical properties ; Metal fatigue ; Modulus of elasticity ; Monolithic materials ; Numerical analysis ; Propagation ; Stress propagation ; Synchrotron radiation ; Synchrotrons ; Titanium ; Yield strength ; Yield stress</subject><ispartof>Materials, 2021-05, Vol.14 (10), p.2564</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</citedby><cites>FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</cites><orcidid>0000-0003-1375-6862 ; 0000-0001-7983-0928 ; 0000-0003-3464-6793 ; 0000-0002-8688-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532640759/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532640759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Pohl, Philip Manuel</creatorcontrib><creatorcontrib>Kümmel, Frank</creatorcontrib><creatorcontrib>Schunk, Christopher</creatorcontrib><creatorcontrib>Serrano-Munoz, Itziar</creatorcontrib><creatorcontrib>Markötter, Henning</creatorcontrib><creatorcontrib>Göken, Mathias</creatorcontrib><creatorcontrib>Höppel, Heinz Werner</creatorcontrib><title>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</title><title>Materials</title><description>The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.</description><subject>Aluminum</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Constituents</subject><subject>Crack bridging</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>Damage tolerance</subject><subject>Deflection</subject><subject>Dissimilar materials</subject><subject>Dissimilar metals</subject><subject>Elastic properties</subject><subject>Fatigue failure</subject><subject>High cycle fatigue</subject><subject>Interfaces</subject><subject>Laminates</subject><subject>Low cycle fatigue</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Modulus of elasticity</subject><subject>Monolithic materials</subject><subject>Numerical analysis</subject><subject>Propagation</subject><subject>Stress propagation</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Titanium</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVtr3DAQhUVJaEKSl_4CQV9KYBPJI2ull0BYmgtsSCnta8VYHm-U2tZWkgv993EuJG3nZYY5H4cZDmMfpDgBsOJ0QKmkqGqt3rF9aa1eSKvUzl_zHjvK-V7MBSBNZd-zPVBC28rAPvtx3sSp8HJH_GvsiceOX4-FUoeeMo_jk3KBJWwm4quE_if_kuIWN_NqVsPI1ziEEQu1_IYK9n3wfBWHbcyhUD5kux32mY5e-gH7fvH52-pqsb69vF6drxceDJSFbrq6tUaIRkhT2wZ8BahMZyQYa1pUYBojl6ozptMAmhQKha32sLQEdQMH7OzZdzs1A7WexpKwd9sUBkx_XMTg_lXGcOc28bczsta6trPBpxeDFH9NlIsbQvbU9zhSnLKratDKCLUUM_rxP_Q-Tmmc33ukKq3E8snw-JnyKeacqHs9Rgr3mJx7Sw4eANySiNY</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Pohl, Philip Manuel</creator><creator>Kümmel, Frank</creator><creator>Schunk, Christopher</creator><creator>Serrano-Munoz, Itziar</creator><creator>Markötter, Henning</creator><creator>Göken, Mathias</creator><creator>Höppel, Heinz Werner</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1375-6862</orcidid><orcidid>https://orcid.org/0000-0001-7983-0928</orcidid><orcidid>https://orcid.org/0000-0003-3464-6793</orcidid><orcidid>https://orcid.org/0000-0002-8688-3865</orcidid></search><sort><creationdate>20210514</creationdate><title>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</title><author>Pohl, Philip Manuel ; Kümmel, Frank ; Schunk, Christopher ; Serrano-Munoz, Itziar ; Markötter, Henning ; Göken, Mathias ; Höppel, Heinz Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Constituents</topic><topic>Crack bridging</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>Damage tolerance</topic><topic>Deflection</topic><topic>Dissimilar materials</topic><topic>Dissimilar metals</topic><topic>Elastic properties</topic><topic>Fatigue failure</topic><topic>High cycle fatigue</topic><topic>Interfaces</topic><topic>Laminates</topic><topic>Low cycle fatigue</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Modulus of elasticity</topic><topic>Monolithic materials</topic><topic>Numerical analysis</topic><topic>Propagation</topic><topic>Stress propagation</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Titanium</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pohl, Philip Manuel</creatorcontrib><creatorcontrib>Kümmel, Frank</creatorcontrib><creatorcontrib>Schunk, Christopher</creatorcontrib><creatorcontrib>Serrano-Munoz, Itziar</creatorcontrib><creatorcontrib>Markötter, Henning</creatorcontrib><creatorcontrib>Göken, Mathias</creatorcontrib><creatorcontrib>Höppel, Heinz Werner</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pohl, Philip Manuel</au><au>Kümmel, Frank</au><au>Schunk, Christopher</au><au>Serrano-Munoz, Itziar</au><au>Markötter, Henning</au><au>Göken, Mathias</au><au>Höppel, Heinz Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites</atitle><jtitle>Materials</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>2564</spage><pages>2564-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34069283</pmid><doi>10.3390/ma14102564</doi><orcidid>https://orcid.org/0000-0003-1375-6862</orcidid><orcidid>https://orcid.org/0000-0001-7983-0928</orcidid><orcidid>https://orcid.org/0000-0003-3464-6793</orcidid><orcidid>https://orcid.org/0000-0002-8688-3865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-05, Vol.14 (10), p.2564 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8156659 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Aluminum Composite materials Computed tomography Constituents Crack bridging Crack initiation Crack propagation Cyclic loads Damage tolerance Deflection Dissimilar materials Dissimilar metals Elastic properties Fatigue failure High cycle fatigue Interfaces Laminates Low cycle fatigue Mechanical properties Metal fatigue Modulus of elasticity Monolithic materials Numerical analysis Propagation Stress propagation Synchrotron radiation Synchrotrons Titanium Yield strength Yield stress |
title | About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20Role%20of%20Interfaces%20on%20the%20Fatigue%20Crack%20Propagation%20in%20Laminated%20Metallic%20Composites&rft.jtitle=Materials&rft.au=Pohl,%20Philip%20Manuel&rft.date=2021-05-14&rft.volume=14&rft.issue=10&rft.spage=2564&rft.pages=2564-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14102564&rft_dat=%3Cproquest_pubme%3E2536480470%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6bf5d9800b01859b3c23a48f813898da438b8174f88f6336e4a04ad6c379e35b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532640759&rft_id=info:pmid/34069283&rfr_iscdi=true |