Loading…

Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state

Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transf...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2020-03, Vol.11 (12), p.325-3257
Main Authors: Umeyama, Tomokazu, Igarashi, Kensho, Sasada, Daiki, Tamai, Yasunari, Ishida, Keiichi, Koganezawa, Tomoyuki, Ohtani, Shunsuke, Tanaka, Kazuo, Ohkita, Hideo, Imahori, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313
cites cdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313
container_end_page 3257
container_issue 12
container_start_page 325
container_title Chemical science (Cambridge)
container_volume 11
creator Umeyama, Tomokazu
Igarashi, Kensho
Sasada, Daiki
Tamai, Yasunari
Ishida, Keiichi
Koganezawa, Tomoyuki
Ohtani, Shunsuke
Tanaka, Kazuo
Ohkita, Hideo
Imahori, Hiroshi
description Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs. A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.
doi_str_mv 10.1039/c9sc06456g
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382496626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</originalsourceid><addsrcrecordid>eNp9kk1vFSEUhidGY5vajXsTjBvTdJSBGYbZNDE3bTVp4kJdEwYOMzQMXIFpev-dP03a21yjC9nw8T7n5XA4VfW6wR8aTIePakgKs7Zj07PqmOC2qVlHh-eHNcFH1WlKt7gMSpuO9C-rI9o2hHBKjqtfl8ZYZcFn5Ow053qW8Q5Stn46R-AhTju02CnKbIM_R9JrpAoyAcpR-mQgonGHvPShMNu5RNSjTKCRD96szkEsRygt0rl6CQ7U6gBJpWCbQ0wI7mc72ofb0OrXtBZsh1woW7hXNoOuU5YZSm4Gsl0AWY_yDMhYt6BH6VX1wkiX4PRpPql-XF1-33yub75ef9l8uqlV1za5VjB0atSaS9wrrDlvdK8MJopzpmEcNO8w5R3HirVEdgPTzIwK49aQlija0JPqYu-7XccFtCoVi9KJbbSLjDsRpBV_K97OYgp3gjdd3_a0GLx_Mojh51pKLBabFDgnPYQ1CdK1uCflK_uCvvsHvQ1r9OV5glBO2oExwgp1tqdUDClFMIdkGiweekNshm-bx964LvCbPRyTOnB_eqfob_-ni6029Dd5VcYo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382496626</pqid></control><display><type>article</type><title>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</title><source>PubMed Central</source><creator>Umeyama, Tomokazu ; Igarashi, Kensho ; Sasada, Daiki ; Tamai, Yasunari ; Ishida, Keiichi ; Koganezawa, Tomoyuki ; Ohtani, Shunsuke ; Tanaka, Kazuo ; Ohkita, Hideo ; Imahori, Hiroshi</creator><creatorcontrib>Umeyama, Tomokazu ; Igarashi, Kensho ; Sasada, Daiki ; Tamai, Yasunari ; Ishida, Keiichi ; Koganezawa, Tomoyuki ; Ohtani, Shunsuke ; Tanaka, Kazuo ; Ohkita, Hideo ; Imahori, Hiroshi</creatorcontrib><description>Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs. A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc06456g</identifier><identifier>PMID: 34122832</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemistry ; Current efficiency ; Electrons ; Energy bands ; Energy conversion efficiency ; Energy gap ; Energy harvesting ; Energy transfer ; Excitons ; Photovoltaic cells ; Polystyrene resins</subject><ispartof>Chemical science (Cambridge), 2020-03, Vol.11 (12), p.325-3257</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</citedby><cites>FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</cites><orcidid>0000-0001-6571-7086 ; 0000-0002-7403-3492 ; 0000-0003-4145-5784 ; 0000-0002-3074-0208 ; 0000-0003-3506-5608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157473/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157473/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Umeyama, Tomokazu</creatorcontrib><creatorcontrib>Igarashi, Kensho</creatorcontrib><creatorcontrib>Sasada, Daiki</creatorcontrib><creatorcontrib>Tamai, Yasunari</creatorcontrib><creatorcontrib>Ishida, Keiichi</creatorcontrib><creatorcontrib>Koganezawa, Tomoyuki</creatorcontrib><creatorcontrib>Ohtani, Shunsuke</creatorcontrib><creatorcontrib>Tanaka, Kazuo</creatorcontrib><creatorcontrib>Ohkita, Hideo</creatorcontrib><creatorcontrib>Imahori, Hiroshi</creatorcontrib><title>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</title><title>Chemical science (Cambridge)</title><description>Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs. A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Current efficiency</subject><subject>Electrons</subject><subject>Energy bands</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Energy harvesting</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Photovoltaic cells</subject><subject>Polystyrene resins</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk1vFSEUhidGY5vajXsTjBvTdJSBGYbZNDE3bTVp4kJdEwYOMzQMXIFpev-dP03a21yjC9nw8T7n5XA4VfW6wR8aTIePakgKs7Zj07PqmOC2qVlHh-eHNcFH1WlKt7gMSpuO9C-rI9o2hHBKjqtfl8ZYZcFn5Ow053qW8Q5Stn46R-AhTju02CnKbIM_R9JrpAoyAcpR-mQgonGHvPShMNu5RNSjTKCRD96szkEsRygt0rl6CQ7U6gBJpWCbQ0wI7mc72ofb0OrXtBZsh1woW7hXNoOuU5YZSm4Gsl0AWY_yDMhYt6BH6VX1wkiX4PRpPql-XF1-33yub75ef9l8uqlV1za5VjB0atSaS9wrrDlvdK8MJopzpmEcNO8w5R3HirVEdgPTzIwK49aQlija0JPqYu-7XccFtCoVi9KJbbSLjDsRpBV_K97OYgp3gjdd3_a0GLx_Mojh51pKLBabFDgnPYQ1CdK1uCflK_uCvvsHvQ1r9OV5glBO2oExwgp1tqdUDClFMIdkGiweekNshm-bx964LvCbPRyTOnB_eqfob_-ni6029Dd5VcYo</recordid><startdate>20200328</startdate><enddate>20200328</enddate><creator>Umeyama, Tomokazu</creator><creator>Igarashi, Kensho</creator><creator>Sasada, Daiki</creator><creator>Tamai, Yasunari</creator><creator>Ishida, Keiichi</creator><creator>Koganezawa, Tomoyuki</creator><creator>Ohtani, Shunsuke</creator><creator>Tanaka, Kazuo</creator><creator>Ohkita, Hideo</creator><creator>Imahori, Hiroshi</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6571-7086</orcidid><orcidid>https://orcid.org/0000-0002-7403-3492</orcidid><orcidid>https://orcid.org/0000-0003-4145-5784</orcidid><orcidid>https://orcid.org/0000-0002-3074-0208</orcidid><orcidid>https://orcid.org/0000-0003-3506-5608</orcidid></search><sort><creationdate>20200328</creationdate><title>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</title><author>Umeyama, Tomokazu ; Igarashi, Kensho ; Sasada, Daiki ; Tamai, Yasunari ; Ishida, Keiichi ; Koganezawa, Tomoyuki ; Ohtani, Shunsuke ; Tanaka, Kazuo ; Ohkita, Hideo ; Imahori, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Current efficiency</topic><topic>Electrons</topic><topic>Energy bands</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Energy harvesting</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Photovoltaic cells</topic><topic>Polystyrene resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umeyama, Tomokazu</creatorcontrib><creatorcontrib>Igarashi, Kensho</creatorcontrib><creatorcontrib>Sasada, Daiki</creatorcontrib><creatorcontrib>Tamai, Yasunari</creatorcontrib><creatorcontrib>Ishida, Keiichi</creatorcontrib><creatorcontrib>Koganezawa, Tomoyuki</creatorcontrib><creatorcontrib>Ohtani, Shunsuke</creatorcontrib><creatorcontrib>Tanaka, Kazuo</creatorcontrib><creatorcontrib>Ohkita, Hideo</creatorcontrib><creatorcontrib>Imahori, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umeyama, Tomokazu</au><au>Igarashi, Kensho</au><au>Sasada, Daiki</au><au>Tamai, Yasunari</au><au>Ishida, Keiichi</au><au>Koganezawa, Tomoyuki</au><au>Ohtani, Shunsuke</au><au>Tanaka, Kazuo</au><au>Ohkita, Hideo</au><au>Imahori, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-03-28</date><risdate>2020</risdate><volume>11</volume><issue>12</issue><spage>325</spage><epage>3257</epage><pages>325-3257</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs. A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34122832</pmid><doi>10.1039/c9sc06456g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6571-7086</orcidid><orcidid>https://orcid.org/0000-0002-7403-3492</orcidid><orcidid>https://orcid.org/0000-0003-4145-5784</orcidid><orcidid>https://orcid.org/0000-0002-3074-0208</orcidid><orcidid>https://orcid.org/0000-0003-3506-5608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-03, Vol.11 (12), p.325-3257
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157473
source PubMed Central
subjects Charge transfer
Chemistry
Current efficiency
Electrons
Energy bands
Energy conversion efficiency
Energy gap
Energy harvesting
Energy transfer
Excitons
Photovoltaic cells
Polystyrene resins
title Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20light-harvesting,%20energy%20migration,%20and%20charge%20transfer%20by%20nanographene-based%20nonfullerene%20small-molecule%20acceptors%20exhibiting%20unusually%20long%20excited-state%20lifetime%20in%20the%20film%20state&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Umeyama,%20Tomokazu&rft.date=2020-03-28&rft.volume=11&rft.issue=12&rft.spage=325&rft.epage=3257&rft.pages=325-3257&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc06456g&rft_dat=%3Cproquest_pubme%3E2382496626%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382496626&rft_id=info:pmid/34122832&rfr_iscdi=true