Loading…
Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state
Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transf...
Saved in:
Published in: | Chemical science (Cambridge) 2020-03, Vol.11 (12), p.325-3257 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313 |
container_end_page | 3257 |
container_issue | 12 |
container_start_page | 325 |
container_title | Chemical science (Cambridge) |
container_volume | 11 |
creator | Umeyama, Tomokazu Igarashi, Kensho Sasada, Daiki Tamai, Yasunari Ishida, Keiichi Koganezawa, Tomoyuki Ohtani, Shunsuke Tanaka, Kazuo Ohkita, Hideo Imahori, Hiroshi |
description | Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.
A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer. |
doi_str_mv | 10.1039/c9sc06456g |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382496626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</originalsourceid><addsrcrecordid>eNp9kk1vFSEUhidGY5vajXsTjBvTdJSBGYbZNDE3bTVp4kJdEwYOMzQMXIFpev-dP03a21yjC9nw8T7n5XA4VfW6wR8aTIePakgKs7Zj07PqmOC2qVlHh-eHNcFH1WlKt7gMSpuO9C-rI9o2hHBKjqtfl8ZYZcFn5Ow053qW8Q5Stn46R-AhTju02CnKbIM_R9JrpAoyAcpR-mQgonGHvPShMNu5RNSjTKCRD96szkEsRygt0rl6CQ7U6gBJpWCbQ0wI7mc72ofb0OrXtBZsh1woW7hXNoOuU5YZSm4Gsl0AWY_yDMhYt6BH6VX1wkiX4PRpPql-XF1-33yub75ef9l8uqlV1za5VjB0atSaS9wrrDlvdK8MJopzpmEcNO8w5R3HirVEdgPTzIwK49aQlija0JPqYu-7XccFtCoVi9KJbbSLjDsRpBV_K97OYgp3gjdd3_a0GLx_Mojh51pKLBabFDgnPYQ1CdK1uCflK_uCvvsHvQ1r9OV5glBO2oExwgp1tqdUDClFMIdkGiweekNshm-bx964LvCbPRyTOnB_eqfob_-ni6029Dd5VcYo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382496626</pqid></control><display><type>article</type><title>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</title><source>PubMed Central</source><creator>Umeyama, Tomokazu ; Igarashi, Kensho ; Sasada, Daiki ; Tamai, Yasunari ; Ishida, Keiichi ; Koganezawa, Tomoyuki ; Ohtani, Shunsuke ; Tanaka, Kazuo ; Ohkita, Hideo ; Imahori, Hiroshi</creator><creatorcontrib>Umeyama, Tomokazu ; Igarashi, Kensho ; Sasada, Daiki ; Tamai, Yasunari ; Ishida, Keiichi ; Koganezawa, Tomoyuki ; Ohtani, Shunsuke ; Tanaka, Kazuo ; Ohkita, Hideo ; Imahori, Hiroshi</creatorcontrib><description>Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.
A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc06456g</identifier><identifier>PMID: 34122832</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemistry ; Current efficiency ; Electrons ; Energy bands ; Energy conversion efficiency ; Energy gap ; Energy harvesting ; Energy transfer ; Excitons ; Photovoltaic cells ; Polystyrene resins</subject><ispartof>Chemical science (Cambridge), 2020-03, Vol.11 (12), p.325-3257</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</citedby><cites>FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</cites><orcidid>0000-0001-6571-7086 ; 0000-0002-7403-3492 ; 0000-0003-4145-5784 ; 0000-0002-3074-0208 ; 0000-0003-3506-5608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157473/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157473/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Umeyama, Tomokazu</creatorcontrib><creatorcontrib>Igarashi, Kensho</creatorcontrib><creatorcontrib>Sasada, Daiki</creatorcontrib><creatorcontrib>Tamai, Yasunari</creatorcontrib><creatorcontrib>Ishida, Keiichi</creatorcontrib><creatorcontrib>Koganezawa, Tomoyuki</creatorcontrib><creatorcontrib>Ohtani, Shunsuke</creatorcontrib><creatorcontrib>Tanaka, Kazuo</creatorcontrib><creatorcontrib>Ohkita, Hideo</creatorcontrib><creatorcontrib>Imahori, Hiroshi</creatorcontrib><title>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</title><title>Chemical science (Cambridge)</title><description>Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.
A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.</description><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Current efficiency</subject><subject>Electrons</subject><subject>Energy bands</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Energy harvesting</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Photovoltaic cells</subject><subject>Polystyrene resins</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk1vFSEUhidGY5vajXsTjBvTdJSBGYbZNDE3bTVp4kJdEwYOMzQMXIFpev-dP03a21yjC9nw8T7n5XA4VfW6wR8aTIePakgKs7Zj07PqmOC2qVlHh-eHNcFH1WlKt7gMSpuO9C-rI9o2hHBKjqtfl8ZYZcFn5Ow053qW8Q5Stn46R-AhTju02CnKbIM_R9JrpAoyAcpR-mQgonGHvPShMNu5RNSjTKCRD96szkEsRygt0rl6CQ7U6gBJpWCbQ0wI7mc72ofb0OrXtBZsh1woW7hXNoOuU5YZSm4Gsl0AWY_yDMhYt6BH6VX1wkiX4PRpPql-XF1-33yub75ef9l8uqlV1za5VjB0atSaS9wrrDlvdK8MJopzpmEcNO8w5R3HirVEdgPTzIwK49aQlija0JPqYu-7XccFtCoVi9KJbbSLjDsRpBV_K97OYgp3gjdd3_a0GLx_Mojh51pKLBabFDgnPYQ1CdK1uCflK_uCvvsHvQ1r9OV5glBO2oExwgp1tqdUDClFMIdkGiweekNshm-bx964LvCbPRyTOnB_eqfob_-ni6029Dd5VcYo</recordid><startdate>20200328</startdate><enddate>20200328</enddate><creator>Umeyama, Tomokazu</creator><creator>Igarashi, Kensho</creator><creator>Sasada, Daiki</creator><creator>Tamai, Yasunari</creator><creator>Ishida, Keiichi</creator><creator>Koganezawa, Tomoyuki</creator><creator>Ohtani, Shunsuke</creator><creator>Tanaka, Kazuo</creator><creator>Ohkita, Hideo</creator><creator>Imahori, Hiroshi</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6571-7086</orcidid><orcidid>https://orcid.org/0000-0002-7403-3492</orcidid><orcidid>https://orcid.org/0000-0003-4145-5784</orcidid><orcidid>https://orcid.org/0000-0002-3074-0208</orcidid><orcidid>https://orcid.org/0000-0003-3506-5608</orcidid></search><sort><creationdate>20200328</creationdate><title>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</title><author>Umeyama, Tomokazu ; Igarashi, Kensho ; Sasada, Daiki ; Tamai, Yasunari ; Ishida, Keiichi ; Koganezawa, Tomoyuki ; Ohtani, Shunsuke ; Tanaka, Kazuo ; Ohkita, Hideo ; Imahori, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Current efficiency</topic><topic>Electrons</topic><topic>Energy bands</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Energy harvesting</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Photovoltaic cells</topic><topic>Polystyrene resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umeyama, Tomokazu</creatorcontrib><creatorcontrib>Igarashi, Kensho</creatorcontrib><creatorcontrib>Sasada, Daiki</creatorcontrib><creatorcontrib>Tamai, Yasunari</creatorcontrib><creatorcontrib>Ishida, Keiichi</creatorcontrib><creatorcontrib>Koganezawa, Tomoyuki</creatorcontrib><creatorcontrib>Ohtani, Shunsuke</creatorcontrib><creatorcontrib>Tanaka, Kazuo</creatorcontrib><creatorcontrib>Ohkita, Hideo</creatorcontrib><creatorcontrib>Imahori, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umeyama, Tomokazu</au><au>Igarashi, Kensho</au><au>Sasada, Daiki</au><au>Tamai, Yasunari</au><au>Ishida, Keiichi</au><au>Koganezawa, Tomoyuki</au><au>Ohtani, Shunsuke</au><au>Tanaka, Kazuo</au><au>Ohkita, Hideo</au><au>Imahori, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-03-28</date><risdate>2020</risdate><volume>11</volume><issue>12</issue><spage>325</spage><epage>3257</epage><pages>325-3257</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.
A nonfullerene acceptor, TACIC, showed efficient light-harvesting, exciton diffusion, and charge transfer.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34122832</pmid><doi>10.1039/c9sc06456g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6571-7086</orcidid><orcidid>https://orcid.org/0000-0002-7403-3492</orcidid><orcidid>https://orcid.org/0000-0003-4145-5784</orcidid><orcidid>https://orcid.org/0000-0002-3074-0208</orcidid><orcidid>https://orcid.org/0000-0003-3506-5608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2020-03, Vol.11 (12), p.325-3257 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157473 |
source | PubMed Central |
subjects | Charge transfer Chemistry Current efficiency Electrons Energy bands Energy conversion efficiency Energy gap Energy harvesting Energy transfer Excitons Photovoltaic cells Polystyrene resins |
title | Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20light-harvesting,%20energy%20migration,%20and%20charge%20transfer%20by%20nanographene-based%20nonfullerene%20small-molecule%20acceptors%20exhibiting%20unusually%20long%20excited-state%20lifetime%20in%20the%20film%20state&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Umeyama,%20Tomokazu&rft.date=2020-03-28&rft.volume=11&rft.issue=12&rft.spage=325&rft.epage=3257&rft.pages=325-3257&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc06456g&rft_dat=%3Cproquest_pubme%3E2382496626%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-ce95cbdd8a07c0d881d7cf02c886deb9d85038580c642a596d6fbc004f242c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382496626&rft_id=info:pmid/34122832&rfr_iscdi=true |