Loading…

Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE

Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (20), p.1-10
Main Authors: Nagae, Takayuki, Unno, Masashi, Koizumi, Taiki, Miyanoiri, Yohei, Fujisawa, Tomotsumi, Masui, Kento, Kamo, Takanari, Wada, Kei, Eki, Toshihiko, Ito, Yutaka, Hirose, Yuu, Mishima, Masaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013
cites cdi_FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013
container_end_page 10
container_issue 20
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Nagae, Takayuki
Unno, Masashi
Koizumi, Taiki
Miyanoiri, Yohei
Fujisawa, Tomotsumi
Masui, Kento
Kamo, Takanari
Wada, Kei
Eki, Toshihiko
Ito, Yutaka
Hirose, Yuu
Mishima, Masaki
description Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a “bucket” consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKₐ, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the “leaky bucket” structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.
doi_str_mv 10.1073/pnas.2024583118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040412</jstor_id><sourcerecordid>27040412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013</originalsourceid><addsrcrecordid>eNpd0U1r3DAQBmBRWppt2nNPLYZeenF29GVLl0IJaRsIBNLcxVgeZ714LVeyA_n31WaT7cdJQvNomOFl7D2HMw61XE8jpjMBQmkjOTcv2IqD5WWlLLxkKwBRl0YJdcLepLQFAKsNvGYnUtpaKGlXrPk5x8XPS8ShaDD1qQhdMW-omGKYg9_EsOt9cReJxnWktpg2--cHP9AzfDQ4Z4XeD_3-GsYi0ZhCLG48XrxlrzocEr17Ok_Z7beL2_Mf5dX198vzr1el12Dnsq6wa8ii6Azq1ipo0HjBK-gMl9hQ26KqO2msrCwS2hoJ2q6pWrKeA5en7Muh7bQ0O2o9jXNeyk0xjxQfXMDe_VsZ-427C_fOcF1baXKDz08NYvi1UJrdrk-ehgFHCktyQgtdaaGsyvTTf3Qbljjm7bKSoLmSFWS1PigfQ0qRuuMwHNw-PrePz_2JL__4-PcOR_-cVwYfDmCb5hCPdVGDAsWF_A2JbqLp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530514360</pqid></control><display><type>article</type><title>Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Nagae, Takayuki ; Unno, Masashi ; Koizumi, Taiki ; Miyanoiri, Yohei ; Fujisawa, Tomotsumi ; Masui, Kento ; Kamo, Takanari ; Wada, Kei ; Eki, Toshihiko ; Ito, Yutaka ; Hirose, Yuu ; Mishima, Masaki</creator><creatorcontrib>Nagae, Takayuki ; Unno, Masashi ; Koizumi, Taiki ; Miyanoiri, Yohei ; Fujisawa, Tomotsumi ; Masui, Kento ; Kamo, Takanari ; Wada, Kei ; Eki, Toshihiko ; Ito, Yutaka ; Hirose, Yuu ; Mishima, Masaki</creatorcontrib><description>Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a “bucket” consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKₐ, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the “leaky bucket” structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2024583118</identifier><identifier>PMID: 33972439</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption ; Acclimation ; Acclimatization ; Binding ; Biological Sciences ; Carboxyl group ; Conformation ; Crystal structure ; Cyanobacteria ; Gene expression ; Hydrophobicity ; Molecular dynamics ; Nitrogen ; Nitrogen atoms ; NMR ; Nuclear magnetic resonance ; Photosynthesis ; Protein kinase A ; Protonation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (20), p.1-10</ispartof><rights>Copyright National Academy of Sciences May 18, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013</citedby><cites>FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013</cites><orcidid>0000-0002-5016-6274 ; 0000-0001-7016-5183 ; 0000-0003-1553-8279 ; 0000-0001-6889-5160 ; 0000-0002-3282-6814 ; 0000-0002-1030-4660 ; 0000-0003-1116-8979 ; 0000-0001-7626-7287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040412$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040412$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33972439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagae, Takayuki</creatorcontrib><creatorcontrib>Unno, Masashi</creatorcontrib><creatorcontrib>Koizumi, Taiki</creatorcontrib><creatorcontrib>Miyanoiri, Yohei</creatorcontrib><creatorcontrib>Fujisawa, Tomotsumi</creatorcontrib><creatorcontrib>Masui, Kento</creatorcontrib><creatorcontrib>Kamo, Takanari</creatorcontrib><creatorcontrib>Wada, Kei</creatorcontrib><creatorcontrib>Eki, Toshihiko</creatorcontrib><creatorcontrib>Ito, Yutaka</creatorcontrib><creatorcontrib>Hirose, Yuu</creatorcontrib><creatorcontrib>Mishima, Masaki</creatorcontrib><title>Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a “bucket” consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKₐ, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the “leaky bucket” structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.</description><subject>Absorption</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Carboxyl group</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>Cyanobacteria</subject><subject>Gene expression</subject><subject>Hydrophobicity</subject><subject>Molecular dynamics</subject><subject>Nitrogen</subject><subject>Nitrogen atoms</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photosynthesis</subject><subject>Protein kinase A</subject><subject>Protonation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0U1r3DAQBmBRWppt2nNPLYZeenF29GVLl0IJaRsIBNLcxVgeZ714LVeyA_n31WaT7cdJQvNomOFl7D2HMw61XE8jpjMBQmkjOTcv2IqD5WWlLLxkKwBRl0YJdcLepLQFAKsNvGYnUtpaKGlXrPk5x8XPS8ShaDD1qQhdMW-omGKYg9_EsOt9cReJxnWktpg2--cHP9AzfDQ4Z4XeD_3-GsYi0ZhCLG48XrxlrzocEr17Ok_Z7beL2_Mf5dX198vzr1el12Dnsq6wa8ii6Azq1ipo0HjBK-gMl9hQ26KqO2msrCwS2hoJ2q6pWrKeA5en7Muh7bQ0O2o9jXNeyk0xjxQfXMDe_VsZ-427C_fOcF1baXKDz08NYvi1UJrdrk-ehgFHCktyQgtdaaGsyvTTf3Qbljjm7bKSoLmSFWS1PigfQ0qRuuMwHNw-PrePz_2JL__4-PcOR_-cVwYfDmCb5hCPdVGDAsWF_A2JbqLp</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Nagae, Takayuki</creator><creator>Unno, Masashi</creator><creator>Koizumi, Taiki</creator><creator>Miyanoiri, Yohei</creator><creator>Fujisawa, Tomotsumi</creator><creator>Masui, Kento</creator><creator>Kamo, Takanari</creator><creator>Wada, Kei</creator><creator>Eki, Toshihiko</creator><creator>Ito, Yutaka</creator><creator>Hirose, Yuu</creator><creator>Mishima, Masaki</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5016-6274</orcidid><orcidid>https://orcid.org/0000-0001-7016-5183</orcidid><orcidid>https://orcid.org/0000-0003-1553-8279</orcidid><orcidid>https://orcid.org/0000-0001-6889-5160</orcidid><orcidid>https://orcid.org/0000-0002-3282-6814</orcidid><orcidid>https://orcid.org/0000-0002-1030-4660</orcidid><orcidid>https://orcid.org/0000-0003-1116-8979</orcidid><orcidid>https://orcid.org/0000-0001-7626-7287</orcidid></search><sort><creationdate>20210518</creationdate><title>Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE</title><author>Nagae, Takayuki ; Unno, Masashi ; Koizumi, Taiki ; Miyanoiri, Yohei ; Fujisawa, Tomotsumi ; Masui, Kento ; Kamo, Takanari ; Wada, Kei ; Eki, Toshihiko ; Ito, Yutaka ; Hirose, Yuu ; Mishima, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Carboxyl group</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>Cyanobacteria</topic><topic>Gene expression</topic><topic>Hydrophobicity</topic><topic>Molecular dynamics</topic><topic>Nitrogen</topic><topic>Nitrogen atoms</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photosynthesis</topic><topic>Protein kinase A</topic><topic>Protonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagae, Takayuki</creatorcontrib><creatorcontrib>Unno, Masashi</creatorcontrib><creatorcontrib>Koizumi, Taiki</creatorcontrib><creatorcontrib>Miyanoiri, Yohei</creatorcontrib><creatorcontrib>Fujisawa, Tomotsumi</creatorcontrib><creatorcontrib>Masui, Kento</creatorcontrib><creatorcontrib>Kamo, Takanari</creatorcontrib><creatorcontrib>Wada, Kei</creatorcontrib><creatorcontrib>Eki, Toshihiko</creatorcontrib><creatorcontrib>Ito, Yutaka</creatorcontrib><creatorcontrib>Hirose, Yuu</creatorcontrib><creatorcontrib>Mishima, Masaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagae, Takayuki</au><au>Unno, Masashi</au><au>Koizumi, Taiki</au><au>Miyanoiri, Yohei</au><au>Fujisawa, Tomotsumi</au><au>Masui, Kento</au><au>Kamo, Takanari</au><au>Wada, Kei</au><au>Eki, Toshihiko</au><au>Ito, Yutaka</au><au>Hirose, Yuu</au><au>Mishima, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-05-18</date><risdate>2021</risdate><volume>118</volume><issue>20</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a “bucket” consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKₐ, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the “leaky bucket” structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33972439</pmid><doi>10.1073/pnas.2024583118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5016-6274</orcidid><orcidid>https://orcid.org/0000-0001-7016-5183</orcidid><orcidid>https://orcid.org/0000-0003-1553-8279</orcidid><orcidid>https://orcid.org/0000-0001-6889-5160</orcidid><orcidid>https://orcid.org/0000-0002-3282-6814</orcidid><orcidid>https://orcid.org/0000-0002-1030-4660</orcidid><orcidid>https://orcid.org/0000-0003-1116-8979</orcidid><orcidid>https://orcid.org/0000-0001-7626-7287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (20), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157938
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Absorption
Acclimation
Acclimatization
Binding
Biological Sciences
Carboxyl group
Conformation
Crystal structure
Cyanobacteria
Gene expression
Hydrophobicity
Molecular dynamics
Nitrogen
Nitrogen atoms
NMR
Nuclear magnetic resonance
Photosynthesis
Protein kinase A
Protonation
title Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20the%20protochromic%20green/red%20photocycle%20of%20the%20chromatic%20acclimation%20sensor%20RcaE&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nagae,%20Takayuki&rft.date=2021-05-18&rft.volume=118&rft.issue=20&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2024583118&rft_dat=%3Cjstor_pubme%3E27040412%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-76afbe9a2f8a5d940ba8c2160f813abedda47f389369aea97ae0dfb6de9c1013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530514360&rft_id=info:pmid/33972439&rft_jstor_id=27040412&rfr_iscdi=true