Loading…

Tumor innervation: peripheral nerves take control of the tumor microenvironment

In recent decades, cancer research has expanded exponentially beyond the study of abnormally dividing cells to include complex and extensive heterotypic interactions between cancer and noncancer cells that constitute the tumor microenvironment (TME). Modulation of stromal, immune, and endothelial ce...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 2021-06, Vol.131 (11)
Main Authors: Gysler, Stefan M, Drapkin, Ronny
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent decades, cancer research has expanded exponentially beyond the study of abnormally dividing cells to include complex and extensive heterotypic interactions between cancer and noncancer cells that constitute the tumor microenvironment (TME). Modulation of stromal, immune, and endothelial cells by cancer cells promotes proliferation, survival, and metabolic changes that support tumor growth and metastasis. Recent evidence demonstrates that tumors can recruit peripheral nerves to the TME, leading to enhanced tumor growth in a range of cancer models through distinct mechanisms. This process, termed tumor innervation, is associated with an aggressive tumor phenotype and correlates with poor prognosis in clinical studies. Therefore, the peripheral nervous system may play an underrecognized role in cancer development, harboring targetable pathways that warrant investigation. To date, nerves have been implicated in driving proliferation, invasion, metastasis, and immune evasion through locally delivered neurotransmitters. However, emerging evidence suggests that cell-cell communication via exosomes induces tumor innervation, and thus exosomes may also mediate neural regulation of the TME. In this Review, seminal studies establishing tumor innervation are discussed, and known and putative signaling mechanisms between peripheral nerves and components of the TME are explored as a means to identify potential opportunities for therapeutic intervention.
ISSN:1558-8238
0021-9738
1558-8238
DOI:10.1172/JCI147276