Loading…

Cortical response to naturalistic stimuli is largely predictable with deep neural networks

Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-05, Vol.7 (22)
Main Authors: Khosla, Meenakshi, Ngo, Gia H, Jamison, Keith, Kuceyeski, Amy, Sabuncu, Mert R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53
cites cdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53
container_end_page
container_issue 22
container_start_page
container_title Science advances
container_volume 7
creator Khosla, Meenakshi
Ngo, Gia H
Jamison, Keith
Kuceyeski, Amy
Sabuncu, Mert R
description Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.
doi_str_mv 10.1126/sciadv.abe7547
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534616846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</originalsourceid><addsrcrecordid>eNpVUU1LJDEQDaKoqFePS45eZjbfnb4IMvixIHjRi5eQTldr3EynTdKK_97IzIp7qVdUvXr14CF0SsmSUqZ-Z-dt_7a0HTRSNDvokPFGLpgUevdHf4BOcn4hhFChlKTtPjrggohWa32IHlcxFe9swAnyFMcMuEQ82jInG3yuK1zLeg4e-4yDTU8QPvCUoPeu2C4AfvflGfcAEx7h66hCeY_pbz5Ge4MNGU62eIQeri7vVzeL27vrP6uL24XjLSkL2oJgxCoqWzYMVDvdKTXwgYrG9r2jtNPVrpVKUUFUw9hgheB1CFJJ5iQ_Qucb3Wnu1tA7GEu1Yabk1zZ9mGi9-X8z-mfzFN-MpoqTRleBs61Aiq8z5GLWPjsIwY4Q52yY5EJRpYWq1OWG6lLMOcHw_YYS85WJ2WRitpnUg18_zX3T_yXAPwFGwou7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534616846</pqid></control><display><type>article</type><title>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</title><source>American Association for the Advancement of Science</source><source>PubMed Central (Training)</source><creator>Khosla, Meenakshi ; Ngo, Gia H ; Jamison, Keith ; Kuceyeski, Amy ; Sabuncu, Mert R</creator><creatorcontrib>Khosla, Meenakshi ; Ngo, Gia H ; Jamison, Keith ; Kuceyeski, Amy ; Sabuncu, Mert R</creatorcontrib><description>Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abe7547</identifier><identifier>PMID: 34049888</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Neuroscience ; SciAdv r-articles</subject><ispartof>Science advances, 2021-05, Vol.7 (22)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</citedby><cites>FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</cites><orcidid>0000-0002-2910-6242 ; 0000-0002-5050-8342 ; 0000-0001-7139-6661 ; 0000-0002-7068-719X ; 0000-0002-2793-2700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163078/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163078/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34049888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khosla, Meenakshi</creatorcontrib><creatorcontrib>Ngo, Gia H</creatorcontrib><creatorcontrib>Jamison, Keith</creatorcontrib><creatorcontrib>Kuceyeski, Amy</creatorcontrib><creatorcontrib>Sabuncu, Mert R</creatorcontrib><title>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.</description><subject>Applied Sciences and Engineering</subject><subject>Neuroscience</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LJDEQDaKoqFePS45eZjbfnb4IMvixIHjRi5eQTldr3EynTdKK_97IzIp7qVdUvXr14CF0SsmSUqZ-Z-dt_7a0HTRSNDvokPFGLpgUevdHf4BOcn4hhFChlKTtPjrggohWa32IHlcxFe9swAnyFMcMuEQ82jInG3yuK1zLeg4e-4yDTU8QPvCUoPeu2C4AfvflGfcAEx7h66hCeY_pbz5Ge4MNGU62eIQeri7vVzeL27vrP6uL24XjLSkL2oJgxCoqWzYMVDvdKTXwgYrG9r2jtNPVrpVKUUFUw9hgheB1CFJJ5iQ_Qucb3Wnu1tA7GEu1Yabk1zZ9mGi9-X8z-mfzFN-MpoqTRleBs61Aiq8z5GLWPjsIwY4Q52yY5EJRpYWq1OWG6lLMOcHw_YYS85WJ2WRitpnUg18_zX3T_yXAPwFGwou7</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Khosla, Meenakshi</creator><creator>Ngo, Gia H</creator><creator>Jamison, Keith</creator><creator>Kuceyeski, Amy</creator><creator>Sabuncu, Mert R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2910-6242</orcidid><orcidid>https://orcid.org/0000-0002-5050-8342</orcidid><orcidid>https://orcid.org/0000-0001-7139-6661</orcidid><orcidid>https://orcid.org/0000-0002-7068-719X</orcidid><orcidid>https://orcid.org/0000-0002-2793-2700</orcidid></search><sort><creationdate>20210501</creationdate><title>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</title><author>Khosla, Meenakshi ; Ngo, Gia H ; Jamison, Keith ; Kuceyeski, Amy ; Sabuncu, Mert R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied Sciences and Engineering</topic><topic>Neuroscience</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosla, Meenakshi</creatorcontrib><creatorcontrib>Ngo, Gia H</creatorcontrib><creatorcontrib>Jamison, Keith</creatorcontrib><creatorcontrib>Kuceyeski, Amy</creatorcontrib><creatorcontrib>Sabuncu, Mert R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khosla, Meenakshi</au><au>Ngo, Gia H</au><au>Jamison, Keith</au><au>Kuceyeski, Amy</au><au>Sabuncu, Mert R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>7</volume><issue>22</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>34049888</pmid><doi>10.1126/sciadv.abe7547</doi><orcidid>https://orcid.org/0000-0002-2910-6242</orcidid><orcidid>https://orcid.org/0000-0002-5050-8342</orcidid><orcidid>https://orcid.org/0000-0001-7139-6661</orcidid><orcidid>https://orcid.org/0000-0002-7068-719X</orcidid><orcidid>https://orcid.org/0000-0002-2793-2700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-05, Vol.7 (22)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163078
source American Association for the Advancement of Science; PubMed Central (Training)
subjects Applied Sciences and Engineering
Neuroscience
SciAdv r-articles
title Cortical response to naturalistic stimuli is largely predictable with deep neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20response%20to%20naturalistic%20stimuli%20is%20largely%20predictable%20with%20deep%20neural%20networks&rft.jtitle=Science%20advances&rft.au=Khosla,%20Meenakshi&rft.date=2021-05-01&rft.volume=7&rft.issue=22&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abe7547&rft_dat=%3Cproquest_pubme%3E2534616846%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534616846&rft_id=info:pmid/34049888&rfr_iscdi=true