Loading…
Cortical response to naturalistic stimuli is largely predictable with deep neural networks
Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects...
Saved in:
Published in: | Science advances 2021-05, Vol.7 (22) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53 |
container_end_page | |
container_issue | 22 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Khosla, Meenakshi Ngo, Gia H Jamison, Keith Kuceyeski, Amy Sabuncu, Mert R |
description | Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions. |
doi_str_mv | 10.1126/sciadv.abe7547 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534616846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</originalsourceid><addsrcrecordid>eNpVUU1LJDEQDaKoqFePS45eZjbfnb4IMvixIHjRi5eQTldr3EynTdKK_97IzIp7qVdUvXr14CF0SsmSUqZ-Z-dt_7a0HTRSNDvokPFGLpgUevdHf4BOcn4hhFChlKTtPjrggohWa32IHlcxFe9swAnyFMcMuEQ82jInG3yuK1zLeg4e-4yDTU8QPvCUoPeu2C4AfvflGfcAEx7h66hCeY_pbz5Ge4MNGU62eIQeri7vVzeL27vrP6uL24XjLSkL2oJgxCoqWzYMVDvdKTXwgYrG9r2jtNPVrpVKUUFUw9hgheB1CFJJ5iQ_Qucb3Wnu1tA7GEu1Yabk1zZ9mGi9-X8z-mfzFN-MpoqTRleBs61Aiq8z5GLWPjsIwY4Q52yY5EJRpYWq1OWG6lLMOcHw_YYS85WJ2WRitpnUg18_zX3T_yXAPwFGwou7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534616846</pqid></control><display><type>article</type><title>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</title><source>American Association for the Advancement of Science</source><source>PubMed Central (Training)</source><creator>Khosla, Meenakshi ; Ngo, Gia H ; Jamison, Keith ; Kuceyeski, Amy ; Sabuncu, Mert R</creator><creatorcontrib>Khosla, Meenakshi ; Ngo, Gia H ; Jamison, Keith ; Kuceyeski, Amy ; Sabuncu, Mert R</creatorcontrib><description>Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abe7547</identifier><identifier>PMID: 34049888</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Neuroscience ; SciAdv r-articles</subject><ispartof>Science advances, 2021-05, Vol.7 (22)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</citedby><cites>FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</cites><orcidid>0000-0002-2910-6242 ; 0000-0002-5050-8342 ; 0000-0001-7139-6661 ; 0000-0002-7068-719X ; 0000-0002-2793-2700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163078/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163078/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34049888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khosla, Meenakshi</creatorcontrib><creatorcontrib>Ngo, Gia H</creatorcontrib><creatorcontrib>Jamison, Keith</creatorcontrib><creatorcontrib>Kuceyeski, Amy</creatorcontrib><creatorcontrib>Sabuncu, Mert R</creatorcontrib><title>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.</description><subject>Applied Sciences and Engineering</subject><subject>Neuroscience</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LJDEQDaKoqFePS45eZjbfnb4IMvixIHjRi5eQTldr3EynTdKK_97IzIp7qVdUvXr14CF0SsmSUqZ-Z-dt_7a0HTRSNDvokPFGLpgUevdHf4BOcn4hhFChlKTtPjrggohWa32IHlcxFe9swAnyFMcMuEQ82jInG3yuK1zLeg4e-4yDTU8QPvCUoPeu2C4AfvflGfcAEx7h66hCeY_pbz5Ge4MNGU62eIQeri7vVzeL27vrP6uL24XjLSkL2oJgxCoqWzYMVDvdKTXwgYrG9r2jtNPVrpVKUUFUw9hgheB1CFJJ5iQ_Qucb3Wnu1tA7GEu1Yabk1zZ9mGi9-X8z-mfzFN-MpoqTRleBs61Aiq8z5GLWPjsIwY4Q52yY5EJRpYWq1OWG6lLMOcHw_YYS85WJ2WRitpnUg18_zX3T_yXAPwFGwou7</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Khosla, Meenakshi</creator><creator>Ngo, Gia H</creator><creator>Jamison, Keith</creator><creator>Kuceyeski, Amy</creator><creator>Sabuncu, Mert R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2910-6242</orcidid><orcidid>https://orcid.org/0000-0002-5050-8342</orcidid><orcidid>https://orcid.org/0000-0001-7139-6661</orcidid><orcidid>https://orcid.org/0000-0002-7068-719X</orcidid><orcidid>https://orcid.org/0000-0002-2793-2700</orcidid></search><sort><creationdate>20210501</creationdate><title>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</title><author>Khosla, Meenakshi ; Ngo, Gia H ; Jamison, Keith ; Kuceyeski, Amy ; Sabuncu, Mert R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied Sciences and Engineering</topic><topic>Neuroscience</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosla, Meenakshi</creatorcontrib><creatorcontrib>Ngo, Gia H</creatorcontrib><creatorcontrib>Jamison, Keith</creatorcontrib><creatorcontrib>Kuceyeski, Amy</creatorcontrib><creatorcontrib>Sabuncu, Mert R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khosla, Meenakshi</au><au>Ngo, Gia H</au><au>Jamison, Keith</au><au>Kuceyeski, Amy</au><au>Sabuncu, Mert R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical response to naturalistic stimuli is largely predictable with deep neural networks</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>7</volume><issue>22</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>34049888</pmid><doi>10.1126/sciadv.abe7547</doi><orcidid>https://orcid.org/0000-0002-2910-6242</orcidid><orcidid>https://orcid.org/0000-0002-5050-8342</orcidid><orcidid>https://orcid.org/0000-0001-7139-6661</orcidid><orcidid>https://orcid.org/0000-0002-7068-719X</orcidid><orcidid>https://orcid.org/0000-0002-2793-2700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-05, Vol.7 (22) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163078 |
source | American Association for the Advancement of Science; PubMed Central (Training) |
subjects | Applied Sciences and Engineering Neuroscience SciAdv r-articles |
title | Cortical response to naturalistic stimuli is largely predictable with deep neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20response%20to%20naturalistic%20stimuli%20is%20largely%20predictable%20with%20deep%20neural%20networks&rft.jtitle=Science%20advances&rft.au=Khosla,%20Meenakshi&rft.date=2021-05-01&rft.volume=7&rft.issue=22&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abe7547&rft_dat=%3Cproquest_pubme%3E2534616846%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-19e420a61592ff18c8b66f3f147addc11b8340a5661406722fa443b83e5652c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534616846&rft_id=info:pmid/34049888&rfr_iscdi=true |