Loading…
Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy
Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypox...
Saved in:
Published in: | Chemical science (Cambridge) 2020-07, Vol.11 (33), p.8817-8827 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3 |
---|---|
cites | |
container_end_page | 8827 |
container_issue | 33 |
container_start_page | 8817 |
container_title | Chemical science (Cambridge) |
container_volume | 11 |
creator | He, Suisui Lu, Siyu Liu, Sha Li, Tianrong Li, Jieling Sun, Shihao Liu, Meilin Liang, Kun Fu, Xu Chen, Fengjuan Meng, Genping Lang, Zhang Hai, Jun Wang, Baodui |
description | Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors. |
doi_str_mv | 10.1039/d0sc02387f |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540719725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3</originalsourceid><addsrcrecordid>eNpdkU2L1zAQxoMo7rLuxU8Q8OKlmpembS6CLK4KC3tQzyVNJm2WNKlJ-mfrV_JLGnVZ0LnMwDP8ZuYZhF5S8oYSLt8akjVhfOjtE3TOSEubTnD59LFm5Axd5nxHanBOBeufozPeUsYpF-fo55dNFRcLrFtMyvsD6xhKit6DwbcMq2BwdmH2UHC8P2YIOIO3Td6tddpBKDioELcllpghZFfcD0gZQ1CTB1wWwC7gkztFvLh5aQ4HvhKPUJXsMo4Wm7TP-c8geGQuxxbvncZlX2P6TUlqO16gZ1b5DJcP-QJ9u_7w9epTc3P78fPV-5tGU8ltYzsxcU2klsNkWAeGTNCDVAO1nLdGWtsKoTjtxEC0aU1fbZGaWkoMkVNn-QV695e77dMKRteFqjXjltyq0jFG5cZ_leCWcY6ncaAd531XAa8fACl-3yGXcXVZg_cqQNzzyERLeip7Jmrrq_9a7-KeQj1vZC3vKRX1ufwXuQGbzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437115023</pqid></control><display><type>article</type><title>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</title><source>PubMed Central</source><creator>He, Suisui ; Lu, Siyu ; Liu, Sha ; Li, Tianrong ; Li, Jieling ; Sun, Shihao ; Liu, Meilin ; Liang, Kun ; Fu, Xu ; Chen, Fengjuan ; Meng, Genping ; Lang, Zhang ; Hai, Jun ; Wang, Baodui</creator><creatorcontrib>He, Suisui ; Lu, Siyu ; Liu, Sha ; Li, Tianrong ; Li, Jieling ; Sun, Shihao ; Liu, Meilin ; Liang, Kun ; Fu, Xu ; Chen, Fengjuan ; Meng, Genping ; Lang, Zhang ; Hai, Jun ; Wang, Baodui</creatorcontrib><description>Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc02387f</identifier><identifier>PMID: 34123135</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anticancer properties ; Biocompatibility ; Chemistry ; Coordination polymers ; Drug resistance ; Drugs ; Hydrogen peroxide ; Hypoxia ; Light irradiation ; Methylene blue ; Organs ; Reagents ; Self sufficiency ; Singlet oxygen ; Synergistic effect ; Synthesis ; Therapy ; Tumors</subject><ispartof>Chemical science (Cambridge), 2020-07, Vol.11 (33), p.8817-8827</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163376/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163376/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>He, Suisui</creatorcontrib><creatorcontrib>Lu, Siyu</creatorcontrib><creatorcontrib>Liu, Sha</creatorcontrib><creatorcontrib>Li, Tianrong</creatorcontrib><creatorcontrib>Li, Jieling</creatorcontrib><creatorcontrib>Sun, Shihao</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Liang, Kun</creatorcontrib><creatorcontrib>Fu, Xu</creatorcontrib><creatorcontrib>Chen, Fengjuan</creatorcontrib><creatorcontrib>Meng, Genping</creatorcontrib><creatorcontrib>Lang, Zhang</creatorcontrib><creatorcontrib>Hai, Jun</creatorcontrib><creatorcontrib>Wang, Baodui</creatorcontrib><title>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</title><title>Chemical science (Cambridge)</title><description>Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.</description><subject>Anticancer properties</subject><subject>Biocompatibility</subject><subject>Chemistry</subject><subject>Coordination polymers</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Hydrogen peroxide</subject><subject>Hypoxia</subject><subject>Light irradiation</subject><subject>Methylene blue</subject><subject>Organs</subject><subject>Reagents</subject><subject>Self sufficiency</subject><subject>Singlet oxygen</subject><subject>Synergistic effect</subject><subject>Synthesis</subject><subject>Therapy</subject><subject>Tumors</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU2L1zAQxoMo7rLuxU8Q8OKlmpembS6CLK4KC3tQzyVNJm2WNKlJ-mfrV_JLGnVZ0LnMwDP8ZuYZhF5S8oYSLt8akjVhfOjtE3TOSEubTnD59LFm5Axd5nxHanBOBeufozPeUsYpF-fo55dNFRcLrFtMyvsD6xhKit6DwbcMq2BwdmH2UHC8P2YIOIO3Td6tddpBKDioELcllpghZFfcD0gZQ1CTB1wWwC7gkztFvLh5aQ4HvhKPUJXsMo4Wm7TP-c8geGQuxxbvncZlX2P6TUlqO16gZ1b5DJcP-QJ9u_7w9epTc3P78fPV-5tGU8ltYzsxcU2klsNkWAeGTNCDVAO1nLdGWtsKoTjtxEC0aU1fbZGaWkoMkVNn-QV695e77dMKRteFqjXjltyq0jFG5cZ_leCWcY6ncaAd531XAa8fACl-3yGXcXVZg_cqQNzzyERLeip7Jmrrq_9a7-KeQj1vZC3vKRX1ufwXuQGbzQ</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>He, Suisui</creator><creator>Lu, Siyu</creator><creator>Liu, Sha</creator><creator>Li, Tianrong</creator><creator>Li, Jieling</creator><creator>Sun, Shihao</creator><creator>Liu, Meilin</creator><creator>Liang, Kun</creator><creator>Fu, Xu</creator><creator>Chen, Fengjuan</creator><creator>Meng, Genping</creator><creator>Lang, Zhang</creator><creator>Hai, Jun</creator><creator>Wang, Baodui</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200728</creationdate><title>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</title><author>He, Suisui ; Lu, Siyu ; Liu, Sha ; Li, Tianrong ; Li, Jieling ; Sun, Shihao ; Liu, Meilin ; Liang, Kun ; Fu, Xu ; Chen, Fengjuan ; Meng, Genping ; Lang, Zhang ; Hai, Jun ; Wang, Baodui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anticancer properties</topic><topic>Biocompatibility</topic><topic>Chemistry</topic><topic>Coordination polymers</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Hydrogen peroxide</topic><topic>Hypoxia</topic><topic>Light irradiation</topic><topic>Methylene blue</topic><topic>Organs</topic><topic>Reagents</topic><topic>Self sufficiency</topic><topic>Singlet oxygen</topic><topic>Synergistic effect</topic><topic>Synthesis</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Suisui</creatorcontrib><creatorcontrib>Lu, Siyu</creatorcontrib><creatorcontrib>Liu, Sha</creatorcontrib><creatorcontrib>Li, Tianrong</creatorcontrib><creatorcontrib>Li, Jieling</creatorcontrib><creatorcontrib>Sun, Shihao</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Liang, Kun</creatorcontrib><creatorcontrib>Fu, Xu</creatorcontrib><creatorcontrib>Chen, Fengjuan</creatorcontrib><creatorcontrib>Meng, Genping</creatorcontrib><creatorcontrib>Lang, Zhang</creatorcontrib><creatorcontrib>Hai, Jun</creatorcontrib><creatorcontrib>Wang, Baodui</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Suisui</au><au>Lu, Siyu</au><au>Liu, Sha</au><au>Li, Tianrong</au><au>Li, Jieling</au><au>Sun, Shihao</au><au>Liu, Meilin</au><au>Liang, Kun</au><au>Fu, Xu</au><au>Chen, Fengjuan</au><au>Meng, Genping</au><au>Lang, Zhang</au><au>Hai, Jun</au><au>Wang, Baodui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-07-28</date><risdate>2020</risdate><volume>11</volume><issue>33</issue><spage>8817</spage><epage>8827</epage><pages>8817-8827</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34123135</pmid><doi>10.1039/d0sc02387f</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2020-07, Vol.11 (33), p.8817-8827 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163376 |
source | PubMed Central |
subjects | Anticancer properties Biocompatibility Chemistry Coordination polymers Drug resistance Drugs Hydrogen peroxide Hypoxia Light irradiation Methylene blue Organs Reagents Self sufficiency Singlet oxygen Synergistic effect Synthesis Therapy Tumors |
title | Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporally%20controlled%20O2%20and%20singlet%20oxygen%20self-sufficient%20nanophotosensitizers%20enable%20the%20in%20vivo%20high-yield%20synthesis%20of%20drugs%20and%20efficient%20hypoxic%20tumor%20therapy&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=He,%20Suisui&rft.date=2020-07-28&rft.volume=11&rft.issue=33&rft.spage=8817&rft.epage=8827&rft.pages=8817-8827&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc02387f&rft_dat=%3Cproquest_pubme%3E2540719725%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437115023&rft_id=info:pmid/34123135&rfr_iscdi=true |