Loading…

Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy

Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypox...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2020-07, Vol.11 (33), p.8817-8827
Main Authors: He, Suisui, Lu, Siyu, Liu, Sha, Li, Tianrong, Li, Jieling, Sun, Shihao, Liu, Meilin, Liang, Kun, Fu, Xu, Chen, Fengjuan, Meng, Genping, Lang, Zhang, Hai, Jun, Wang, Baodui
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3
cites
container_end_page 8827
container_issue 33
container_start_page 8817
container_title Chemical science (Cambridge)
container_volume 11
creator He, Suisui
Lu, Siyu
Liu, Sha
Li, Tianrong
Li, Jieling
Sun, Shihao
Liu, Meilin
Liang, Kun
Fu, Xu
Chen, Fengjuan
Meng, Genping
Lang, Zhang
Hai, Jun
Wang, Baodui
description Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.
doi_str_mv 10.1039/d0sc02387f
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540719725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3</originalsourceid><addsrcrecordid>eNpdkU2L1zAQxoMo7rLuxU8Q8OKlmpembS6CLK4KC3tQzyVNJm2WNKlJ-mfrV_JLGnVZ0LnMwDP8ZuYZhF5S8oYSLt8akjVhfOjtE3TOSEubTnD59LFm5Axd5nxHanBOBeufozPeUsYpF-fo55dNFRcLrFtMyvsD6xhKit6DwbcMq2BwdmH2UHC8P2YIOIO3Td6tddpBKDioELcllpghZFfcD0gZQ1CTB1wWwC7gkztFvLh5aQ4HvhKPUJXsMo4Wm7TP-c8geGQuxxbvncZlX2P6TUlqO16gZ1b5DJcP-QJ9u_7w9epTc3P78fPV-5tGU8ltYzsxcU2klsNkWAeGTNCDVAO1nLdGWtsKoTjtxEC0aU1fbZGaWkoMkVNn-QV695e77dMKRteFqjXjltyq0jFG5cZ_leCWcY6ncaAd531XAa8fACl-3yGXcXVZg_cqQNzzyERLeip7Jmrrq_9a7-KeQj1vZC3vKRX1ufwXuQGbzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437115023</pqid></control><display><type>article</type><title>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</title><source>PubMed Central</source><creator>He, Suisui ; Lu, Siyu ; Liu, Sha ; Li, Tianrong ; Li, Jieling ; Sun, Shihao ; Liu, Meilin ; Liang, Kun ; Fu, Xu ; Chen, Fengjuan ; Meng, Genping ; Lang, Zhang ; Hai, Jun ; Wang, Baodui</creator><creatorcontrib>He, Suisui ; Lu, Siyu ; Liu, Sha ; Li, Tianrong ; Li, Jieling ; Sun, Shihao ; Liu, Meilin ; Liang, Kun ; Fu, Xu ; Chen, Fengjuan ; Meng, Genping ; Lang, Zhang ; Hai, Jun ; Wang, Baodui</creatorcontrib><description>Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc02387f</identifier><identifier>PMID: 34123135</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anticancer properties ; Biocompatibility ; Chemistry ; Coordination polymers ; Drug resistance ; Drugs ; Hydrogen peroxide ; Hypoxia ; Light irradiation ; Methylene blue ; Organs ; Reagents ; Self sufficiency ; Singlet oxygen ; Synergistic effect ; Synthesis ; Therapy ; Tumors</subject><ispartof>Chemical science (Cambridge), 2020-07, Vol.11 (33), p.8817-8827</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163376/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163376/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>He, Suisui</creatorcontrib><creatorcontrib>Lu, Siyu</creatorcontrib><creatorcontrib>Liu, Sha</creatorcontrib><creatorcontrib>Li, Tianrong</creatorcontrib><creatorcontrib>Li, Jieling</creatorcontrib><creatorcontrib>Sun, Shihao</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Liang, Kun</creatorcontrib><creatorcontrib>Fu, Xu</creatorcontrib><creatorcontrib>Chen, Fengjuan</creatorcontrib><creatorcontrib>Meng, Genping</creatorcontrib><creatorcontrib>Lang, Zhang</creatorcontrib><creatorcontrib>Hai, Jun</creatorcontrib><creatorcontrib>Wang, Baodui</creatorcontrib><title>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</title><title>Chemical science (Cambridge)</title><description>Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.</description><subject>Anticancer properties</subject><subject>Biocompatibility</subject><subject>Chemistry</subject><subject>Coordination polymers</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Hydrogen peroxide</subject><subject>Hypoxia</subject><subject>Light irradiation</subject><subject>Methylene blue</subject><subject>Organs</subject><subject>Reagents</subject><subject>Self sufficiency</subject><subject>Singlet oxygen</subject><subject>Synergistic effect</subject><subject>Synthesis</subject><subject>Therapy</subject><subject>Tumors</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU2L1zAQxoMo7rLuxU8Q8OKlmpembS6CLK4KC3tQzyVNJm2WNKlJ-mfrV_JLGnVZ0LnMwDP8ZuYZhF5S8oYSLt8akjVhfOjtE3TOSEubTnD59LFm5Axd5nxHanBOBeufozPeUsYpF-fo55dNFRcLrFtMyvsD6xhKit6DwbcMq2BwdmH2UHC8P2YIOIO3Td6tddpBKDioELcllpghZFfcD0gZQ1CTB1wWwC7gkztFvLh5aQ4HvhKPUJXsMo4Wm7TP-c8geGQuxxbvncZlX2P6TUlqO16gZ1b5DJcP-QJ9u_7w9epTc3P78fPV-5tGU8ltYzsxcU2klsNkWAeGTNCDVAO1nLdGWtsKoTjtxEC0aU1fbZGaWkoMkVNn-QV695e77dMKRteFqjXjltyq0jFG5cZ_leCWcY6ncaAd531XAa8fACl-3yGXcXVZg_cqQNzzyERLeip7Jmrrq_9a7-KeQj1vZC3vKRX1ufwXuQGbzQ</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>He, Suisui</creator><creator>Lu, Siyu</creator><creator>Liu, Sha</creator><creator>Li, Tianrong</creator><creator>Li, Jieling</creator><creator>Sun, Shihao</creator><creator>Liu, Meilin</creator><creator>Liang, Kun</creator><creator>Fu, Xu</creator><creator>Chen, Fengjuan</creator><creator>Meng, Genping</creator><creator>Lang, Zhang</creator><creator>Hai, Jun</creator><creator>Wang, Baodui</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200728</creationdate><title>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</title><author>He, Suisui ; Lu, Siyu ; Liu, Sha ; Li, Tianrong ; Li, Jieling ; Sun, Shihao ; Liu, Meilin ; Liang, Kun ; Fu, Xu ; Chen, Fengjuan ; Meng, Genping ; Lang, Zhang ; Hai, Jun ; Wang, Baodui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anticancer properties</topic><topic>Biocompatibility</topic><topic>Chemistry</topic><topic>Coordination polymers</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Hydrogen peroxide</topic><topic>Hypoxia</topic><topic>Light irradiation</topic><topic>Methylene blue</topic><topic>Organs</topic><topic>Reagents</topic><topic>Self sufficiency</topic><topic>Singlet oxygen</topic><topic>Synergistic effect</topic><topic>Synthesis</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Suisui</creatorcontrib><creatorcontrib>Lu, Siyu</creatorcontrib><creatorcontrib>Liu, Sha</creatorcontrib><creatorcontrib>Li, Tianrong</creatorcontrib><creatorcontrib>Li, Jieling</creatorcontrib><creatorcontrib>Sun, Shihao</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Liang, Kun</creatorcontrib><creatorcontrib>Fu, Xu</creatorcontrib><creatorcontrib>Chen, Fengjuan</creatorcontrib><creatorcontrib>Meng, Genping</creatorcontrib><creatorcontrib>Lang, Zhang</creatorcontrib><creatorcontrib>Hai, Jun</creatorcontrib><creatorcontrib>Wang, Baodui</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Suisui</au><au>Lu, Siyu</au><au>Liu, Sha</au><au>Li, Tianrong</au><au>Li, Jieling</au><au>Sun, Shihao</au><au>Liu, Meilin</au><au>Liang, Kun</au><au>Fu, Xu</au><au>Chen, Fengjuan</au><au>Meng, Genping</au><au>Lang, Zhang</au><au>Hai, Jun</au><au>Wang, Baodui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-07-28</date><risdate>2020</risdate><volume>11</volume><issue>33</issue><spage>8817</spage><epage>8827</epage><pages>8817-8827</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34123135</pmid><doi>10.1039/d0sc02387f</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-07, Vol.11 (33), p.8817-8827
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163376
source PubMed Central
subjects Anticancer properties
Biocompatibility
Chemistry
Coordination polymers
Drug resistance
Drugs
Hydrogen peroxide
Hypoxia
Light irradiation
Methylene blue
Organs
Reagents
Self sufficiency
Singlet oxygen
Synergistic effect
Synthesis
Therapy
Tumors
title Spatiotemporally controlled O2 and singlet oxygen self-sufficient nanophotosensitizers enable the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporally%20controlled%20O2%20and%20singlet%20oxygen%20self-sufficient%20nanophotosensitizers%20enable%20the%20in%20vivo%20high-yield%20synthesis%20of%20drugs%20and%20efficient%20hypoxic%20tumor%20therapy&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=He,%20Suisui&rft.date=2020-07-28&rft.volume=11&rft.issue=33&rft.spage=8817&rft.epage=8827&rft.pages=8817-8827&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc02387f&rft_dat=%3Cproquest_pubme%3E2540719725%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c193f-f65b3c09c98bd26ed0be7e9a81f334d9ff455a316580cd4d73319c1f10d09b6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437115023&rft_id=info:pmid/34123135&rfr_iscdi=true