Loading…

Improved Subglottal Pressure Estimation From Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation

Subglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing 2020-02, Vol.14 (2), p.449-460
Main Authors: Lin, Jon Z., Espinoza, Victor M., Marks, Katherine L., Zanartu, Matias, Mehta, Daryush D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3
cites cdi_FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3
container_end_page 460
container_issue 2
container_start_page 449
container_title IEEE journal of selected topics in signal processing
container_volume 14
creator Lin, Jon Z.
Espinoza, Victor M.
Marks, Katherine L.
Zanartu, Matias
Mehta, Daryush D.
description Subglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal pressure from an unobtrusive miniature accelerometer sensor attached to the anterior base of the neck during typical modal voice production across multiple pitch and vowel contexts. This study expands on that work to incorporate additional accelerometer-based measures of vocal function to compensate for non-modal phonation characteristics and achieve an improved estimation of subglottal pressure. Subjects with normal voices repeated /p/-vowel syllable strings from loud-to-soft levels in multiple vowel contexts (/a/, /i/, and /u/), pitch conditions (comfortable, lower than comfortable, higher than comfortable), and voice quality types (modal, breathy, strained, and rough). Subject-specific, stepwise regression models were constructed using root-mean-square (RMS) values of the accelerometer signal alone (baseline condition) and in combination with cepstral peak prominence, fundamental frequency, and glottal airflow measures derived using subglottal impedance-based inverse filtering. Five-fold cross-validation assessed the robustness of model performance using the root-mean-square error metric for each regression model. Each cross-validation fold exhibited up to a 25% decrease in prediction error when the model incorporated multi-dimensional aspects of the accelerometer signal compared with RMS-only models. Improved estimation of subglottal pressure for non-modal phonation was thus achievable, lending to future studies of subglottal pressure estimation in patients with voice disorders and in ambulatory voice recordings.
doi_str_mv 10.1109/JSTSP.2019.2959267
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8168553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8931580</ieee_id><sourcerecordid>2536798719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxUVpaNJtv0B7MfTSi7caSbalS6GEpEnIP3Daq5Dl0a4S29pKdiDfPt7sEmhOMzDv_ZiZR8gXoEsAqn5c1Hf17ZJRUEumCsXK6h05AiUgp0KK99ues1wUBT8kH1O6p7SoShAfyCEXtFIlsCMynfebGB6xzeqpWXVhHE2X3UZMaYqYnaTR92b0YchOY-iza7QPeT1FZyxmf30TdzM_ZGdounH9lNUbNA8Y08wI7WT9sMquw5BfhXbLXYfhxfGJHDjTJfy8rwvy5_Tk7vgsv7z5fX786zK3oirHXMmiYQascs5IWnJg4EQFWDonHACnXKKxVgBW0jpjZNM6iS1tLCvBNoYvyM8ddzM1PbYWhzGaTm_ifFV80sF4_f9k8Gu9Co9aQinnv82A73tADP8mTKPufbLYdWbAMCXNCl5WSlbzpxfk2xvpfZjiMJ-nGZcSKFDJZhXbqWwMKUV0r8sA1dtU9Uuqepuq3qc6m77uTB4RXw1ScSgk5c9rMKAT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388101082</pqid></control><display><type>article</type><title>Improved Subglottal Pressure Estimation From Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Jon Z. ; Espinoza, Victor M. ; Marks, Katherine L. ; Zanartu, Matias ; Mehta, Daryush D.</creator><creatorcontrib>Lin, Jon Z. ; Espinoza, Victor M. ; Marks, Katherine L. ; Zanartu, Matias ; Mehta, Daryush D.</creatorcontrib><description>Subglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal pressure from an unobtrusive miniature accelerometer sensor attached to the anterior base of the neck during typical modal voice production across multiple pitch and vowel contexts. This study expands on that work to incorporate additional accelerometer-based measures of vocal function to compensate for non-modal phonation characteristics and achieve an improved estimation of subglottal pressure. Subjects with normal voices repeated /p/-vowel syllable strings from loud-to-soft levels in multiple vowel contexts (/a/, /i/, and /u/), pitch conditions (comfortable, lower than comfortable, higher than comfortable), and voice quality types (modal, breathy, strained, and rough). Subject-specific, stepwise regression models were constructed using root-mean-square (RMS) values of the accelerometer signal alone (baseline condition) and in combination with cepstral peak prominence, fundamental frequency, and glottal airflow measures derived using subglottal impedance-based inverse filtering. Five-fold cross-validation assessed the robustness of model performance using the root-mean-square error metric for each regression model. Each cross-validation fold exhibited up to a 25% decrease in prediction error when the model incorporated multi-dimensional aspects of the accelerometer signal compared with RMS-only models. Improved estimation of subglottal pressure for non-modal phonation was thus achievable, lending to future studies of subglottal pressure estimation in patients with voice disorders and in ambulatory voice recordings.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2019.2959267</identifier><identifier>PMID: 34079612</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Air flow ; ambulatory voice monitoring ; Atmospheric modeling ; clinical voice assessment ; Estimation ; Monitoring ; neck-surface accelerometer ; Phonation ; Pitch ; Production ; Regression models ; Resonant frequencies ; Robustness (mathematics) ; Sound pressure ; Subglottal pressure ; Surgery ; Vibrations ; Voice control</subject><ispartof>IEEE journal of selected topics in signal processing, 2020-02, Vol.14 (2), p.449-460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3</citedby><cites>FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3</cites><orcidid>0000-0002-7990-7750 ; 0000-0001-9013-6830 ; 0000-0001-5581-4392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8931580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Lin, Jon Z.</creatorcontrib><creatorcontrib>Espinoza, Victor M.</creatorcontrib><creatorcontrib>Marks, Katherine L.</creatorcontrib><creatorcontrib>Zanartu, Matias</creatorcontrib><creatorcontrib>Mehta, Daryush D.</creatorcontrib><title>Improved Subglottal Pressure Estimation From Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Subglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal pressure from an unobtrusive miniature accelerometer sensor attached to the anterior base of the neck during typical modal voice production across multiple pitch and vowel contexts. This study expands on that work to incorporate additional accelerometer-based measures of vocal function to compensate for non-modal phonation characteristics and achieve an improved estimation of subglottal pressure. Subjects with normal voices repeated /p/-vowel syllable strings from loud-to-soft levels in multiple vowel contexts (/a/, /i/, and /u/), pitch conditions (comfortable, lower than comfortable, higher than comfortable), and voice quality types (modal, breathy, strained, and rough). Subject-specific, stepwise regression models were constructed using root-mean-square (RMS) values of the accelerometer signal alone (baseline condition) and in combination with cepstral peak prominence, fundamental frequency, and glottal airflow measures derived using subglottal impedance-based inverse filtering. Five-fold cross-validation assessed the robustness of model performance using the root-mean-square error metric for each regression model. Each cross-validation fold exhibited up to a 25% decrease in prediction error when the model incorporated multi-dimensional aspects of the accelerometer signal compared with RMS-only models. Improved estimation of subglottal pressure for non-modal phonation was thus achievable, lending to future studies of subglottal pressure estimation in patients with voice disorders and in ambulatory voice recordings.</description><subject>Accelerometers</subject><subject>Air flow</subject><subject>ambulatory voice monitoring</subject><subject>Atmospheric modeling</subject><subject>clinical voice assessment</subject><subject>Estimation</subject><subject>Monitoring</subject><subject>neck-surface accelerometer</subject><subject>Phonation</subject><subject>Pitch</subject><subject>Production</subject><subject>Regression models</subject><subject>Resonant frequencies</subject><subject>Robustness (mathematics)</subject><subject>Sound pressure</subject><subject>Subglottal pressure</subject><subject>Surgery</subject><subject>Vibrations</subject><subject>Voice control</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU9r3DAQxUVpaNJtv0B7MfTSi7caSbalS6GEpEnIP3Daq5Dl0a4S29pKdiDfPt7sEmhOMzDv_ZiZR8gXoEsAqn5c1Hf17ZJRUEumCsXK6h05AiUgp0KK99ues1wUBT8kH1O6p7SoShAfyCEXtFIlsCMynfebGB6xzeqpWXVhHE2X3UZMaYqYnaTR92b0YchOY-iza7QPeT1FZyxmf30TdzM_ZGdounH9lNUbNA8Y08wI7WT9sMquw5BfhXbLXYfhxfGJHDjTJfy8rwvy5_Tk7vgsv7z5fX786zK3oirHXMmiYQascs5IWnJg4EQFWDonHACnXKKxVgBW0jpjZNM6iS1tLCvBNoYvyM8ddzM1PbYWhzGaTm_ifFV80sF4_f9k8Gu9Co9aQinnv82A73tADP8mTKPufbLYdWbAMCXNCl5WSlbzpxfk2xvpfZjiMJ-nGZcSKFDJZhXbqWwMKUV0r8sA1dtU9Uuqepuq3qc6m77uTB4RXw1ScSgk5c9rMKAT</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lin, Jon Z.</creator><creator>Espinoza, Victor M.</creator><creator>Marks, Katherine L.</creator><creator>Zanartu, Matias</creator><creator>Mehta, Daryush D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7990-7750</orcidid><orcidid>https://orcid.org/0000-0001-9013-6830</orcidid><orcidid>https://orcid.org/0000-0001-5581-4392</orcidid></search><sort><creationdate>20200201</creationdate><title>Improved Subglottal Pressure Estimation From Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation</title><author>Lin, Jon Z. ; Espinoza, Victor M. ; Marks, Katherine L. ; Zanartu, Matias ; Mehta, Daryush D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerometers</topic><topic>Air flow</topic><topic>ambulatory voice monitoring</topic><topic>Atmospheric modeling</topic><topic>clinical voice assessment</topic><topic>Estimation</topic><topic>Monitoring</topic><topic>neck-surface accelerometer</topic><topic>Phonation</topic><topic>Pitch</topic><topic>Production</topic><topic>Regression models</topic><topic>Resonant frequencies</topic><topic>Robustness (mathematics)</topic><topic>Sound pressure</topic><topic>Subglottal pressure</topic><topic>Surgery</topic><topic>Vibrations</topic><topic>Voice control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jon Z.</creatorcontrib><creatorcontrib>Espinoza, Victor M.</creatorcontrib><creatorcontrib>Marks, Katherine L.</creatorcontrib><creatorcontrib>Zanartu, Matias</creatorcontrib><creatorcontrib>Mehta, Daryush D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jon Z.</au><au>Espinoza, Victor M.</au><au>Marks, Katherine L.</au><au>Zanartu, Matias</au><au>Mehta, Daryush D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Subglottal Pressure Estimation From Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>14</volume><issue>2</issue><spage>449</spage><epage>460</epage><pages>449-460</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Subglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal pressure from an unobtrusive miniature accelerometer sensor attached to the anterior base of the neck during typical modal voice production across multiple pitch and vowel contexts. This study expands on that work to incorporate additional accelerometer-based measures of vocal function to compensate for non-modal phonation characteristics and achieve an improved estimation of subglottal pressure. Subjects with normal voices repeated /p/-vowel syllable strings from loud-to-soft levels in multiple vowel contexts (/a/, /i/, and /u/), pitch conditions (comfortable, lower than comfortable, higher than comfortable), and voice quality types (modal, breathy, strained, and rough). Subject-specific, stepwise regression models were constructed using root-mean-square (RMS) values of the accelerometer signal alone (baseline condition) and in combination with cepstral peak prominence, fundamental frequency, and glottal airflow measures derived using subglottal impedance-based inverse filtering. Five-fold cross-validation assessed the robustness of model performance using the root-mean-square error metric for each regression model. Each cross-validation fold exhibited up to a 25% decrease in prediction error when the model incorporated multi-dimensional aspects of the accelerometer signal compared with RMS-only models. Improved estimation of subglottal pressure for non-modal phonation was thus achievable, lending to future studies of subglottal pressure estimation in patients with voice disorders and in ambulatory voice recordings.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34079612</pmid><doi>10.1109/JSTSP.2019.2959267</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7990-7750</orcidid><orcidid>https://orcid.org/0000-0001-9013-6830</orcidid><orcidid>https://orcid.org/0000-0001-5581-4392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2020-02, Vol.14 (2), p.449-460
issn 1932-4553
1941-0484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8168553
source IEEE Electronic Library (IEL) Journals
subjects Accelerometers
Air flow
ambulatory voice monitoring
Atmospheric modeling
clinical voice assessment
Estimation
Monitoring
neck-surface accelerometer
Phonation
Pitch
Production
Regression models
Resonant frequencies
Robustness (mathematics)
Sound pressure
Subglottal pressure
Surgery
Vibrations
Voice control
title Improved Subglottal Pressure Estimation From Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Subglottal%20Pressure%20Estimation%20From%20Neck-Surface%20Vibration%20in%20Healthy%20Speakers%20Producing%20Non-Modal%20Phonation&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Lin,%20Jon%20Z.&rft.date=2020-02-01&rft.volume=14&rft.issue=2&rft.spage=449&rft.epage=460&rft.pages=449-460&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2019.2959267&rft_dat=%3Cproquest_pubme%3E2536798719%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-985b2a1c9ffa8063121f471e6ff4f113038eacc41e78cfaa8bdf8ed0bc261cba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388101082&rft_id=info:pmid/34079612&rft_ieee_id=8931580&rfr_iscdi=true