Loading…

Assembly Control at a Low Péclet Number in Ultracentrifugation for Uniformly Sized Nanoparticles

The intrinsic high diffusion rate of colloids at low Péclet number results in an extremely fast crystallization process and instant formation of colloidal crystals, even at an ultracentrifugal field of extremely high intensity. By introducing a small number of clusters in sedimention, it should be p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2021-04, Vol.125 (16), p.8752-8758
Main Authors: Xu, Xufeng, Wu, Baohu, Cölfen, Helmut, de With, Gijsbertus
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intrinsic high diffusion rate of colloids at low Péclet number results in an extremely fast crystallization process and instant formation of colloidal crystals, even at an ultracentrifugal field of extremely high intensity. By introducing a small number of clusters in sedimention, it should be possible to slow down the crystallization process, thus making the assembly order tunable in preparative ultracentrifugation experiments. Here, we used sodium dodecyl sulfate-stabilized polystyrene nanoparticles (with a size dispersity of 1.07) dispersed in a solution of high ionic strength. Sedimentation and assembly of these nanoparticles were done using preparative ultracentrifugation at various angular velocities. The sedimentation process was also analyzed in situ by analytical ultracentrifugation in real time. By creating as low as 3% of clusters into these nearly uniformly sized polystyrene nanoparticle dispersions during the sedimentation process, the superstructure order becomes easily tunable between glassy and crystalline. Theoretical calculations complemented the experiments to explain the mechanism of cluster formation in sedimentation. This work provides a novel methodology to produce superstructures with a tunable packing order for colloids at low Péclet number.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.1c00143