Loading…
Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA
In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to i...
Saved in:
Published in: | Computational intelligence and neuroscience 2021, Vol.2021 (1), p.5557831-5557831 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73 |
container_end_page | 5557831 |
container_issue | 1 |
container_start_page | 5557831 |
container_title | Computational intelligence and neuroscience |
container_volume | 2021 |
creator | Zhao, Hongze Xu, Zhihai Li, Qi Pan, Tao |
description | In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face. |
doi_str_mv | 10.1155/2021/5557831 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8169252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696896744</galeid><sourcerecordid>A696896744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73</originalsourceid><addsrcrecordid>eNp9kU9rHCEYhyW0JGmaWz-A0Euh3UYdHZ1LYbt000L-HZKzvKPOrmFGtzqTkHz6uuyS0B6KoC_68PjqD6EPlHylVIgzRhg9E0JIVdEDdExrJWeCyerNS12LI_Qu53tChBSEHaKjilPGRMWOkb7ejH7wzzD6GHDs8E2KxuWMFzGMKfb4BhIMbnQp4y4mvJz6_glfOrOG4J-dxZc--LDCSzAOf4dcdopnfnWFIVh8Pn-P3nbQZ3e6X0_Q3fLH7eLn7OL6_NdifjEzgtJxZmXVcsWZE6TqJG8YV52CUltCpZOtobKVXNrWcsOEE2UyBCwxhLSqBVmdoG8772ZqB2eNK91DrzfJD5CedASv_z4Jfq1X8UErWjdMsCL4tBek-HtyedSDz8b1PQQXp6yZ4ESWT2vqgn78B72PUwrleYWqZBlUNa_UCnqnfehiuddspXpeN7Vqasl5ob7sKJNizsl1Ly1Torf56m2-ep9vwT_v8LUPFh79_-k_duShVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537373189</pqid></control><display><type>article</type><title>Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Zhao, Hongze ; Xu, Zhihai ; Li, Qi ; Pan, Tao</creator><contributor>Köker, Raşit ; Raşit Köker</contributor><creatorcontrib>Zhao, Hongze ; Xu, Zhihai ; Li, Qi ; Pan, Tao ; Köker, Raşit ; Raşit Köker</creatorcontrib><description>In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2021/5557831</identifier><identifier>PMID: 34122532</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Automation ; Chain conveyors ; Chains ; Coal mines ; Coal mining ; Conveying machinery ; Cooperation ; Cost function ; Efficiency ; Entropy (Information theory) ; Expected values ; Friction stir welding ; Genetic algorithms ; Hydraulics ; Industrial production ; Learning theory ; Mean square errors ; Mineral industry ; Mining industry ; Neural networks ; Optimization ; Process controls ; Process parameters ; Production capacity</subject><ispartof>Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.5557831-5557831</ispartof><rights>Copyright © 2021 Hongze Zhao et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Hongze Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Hongze Zhao et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73</citedby><cites>FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73</cites><orcidid>0000-0002-4991-3869 ; 0000-0002-6447-8893 ; 0000-0003-2565-9648 ; 0000-0002-1900-4656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2537373189/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2537373189?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,25731,27900,27901,27902,36989,36990,44566,74869</link.rule.ids></links><search><contributor>Köker, Raşit</contributor><contributor>Raşit Köker</contributor><creatorcontrib>Zhao, Hongze</creatorcontrib><creatorcontrib>Xu, Zhihai</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Pan, Tao</creatorcontrib><title>Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA</title><title>Computational intelligence and neuroscience</title><description>In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Chain conveyors</subject><subject>Chains</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Conveying machinery</subject><subject>Cooperation</subject><subject>Cost function</subject><subject>Efficiency</subject><subject>Entropy (Information theory)</subject><subject>Expected values</subject><subject>Friction stir welding</subject><subject>Genetic algorithms</subject><subject>Hydraulics</subject><subject>Industrial production</subject><subject>Learning theory</subject><subject>Mean square errors</subject><subject>Mineral industry</subject><subject>Mining industry</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Production capacity</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9rHCEYhyW0JGmaWz-A0Euh3UYdHZ1LYbt000L-HZKzvKPOrmFGtzqTkHz6uuyS0B6KoC_68PjqD6EPlHylVIgzRhg9E0JIVdEDdExrJWeCyerNS12LI_Qu53tChBSEHaKjilPGRMWOkb7ejH7wzzD6GHDs8E2KxuWMFzGMKfb4BhIMbnQp4y4mvJz6_glfOrOG4J-dxZc--LDCSzAOf4dcdopnfnWFIVh8Pn-P3nbQZ3e6X0_Q3fLH7eLn7OL6_NdifjEzgtJxZmXVcsWZE6TqJG8YV52CUltCpZOtobKVXNrWcsOEE2UyBCwxhLSqBVmdoG8772ZqB2eNK91DrzfJD5CedASv_z4Jfq1X8UErWjdMsCL4tBek-HtyedSDz8b1PQQXp6yZ4ESWT2vqgn78B72PUwrleYWqZBlUNa_UCnqnfehiuddspXpeN7Vqasl5ob7sKJNizsl1Ly1Torf56m2-ep9vwT_v8LUPFh79_-k_duShVQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhao, Hongze</creator><creator>Xu, Zhihai</creator><creator>Li, Qi</creator><creator>Pan, Tao</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4991-3869</orcidid><orcidid>https://orcid.org/0000-0002-6447-8893</orcidid><orcidid>https://orcid.org/0000-0003-2565-9648</orcidid><orcidid>https://orcid.org/0000-0002-1900-4656</orcidid></search><sort><creationdate>2021</creationdate><title>Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA</title><author>Zhao, Hongze ; Xu, Zhihai ; Li, Qi ; Pan, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Chain conveyors</topic><topic>Chains</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Conveying machinery</topic><topic>Cooperation</topic><topic>Cost function</topic><topic>Efficiency</topic><topic>Entropy (Information theory)</topic><topic>Expected values</topic><topic>Friction stir welding</topic><topic>Genetic algorithms</topic><topic>Hydraulics</topic><topic>Industrial production</topic><topic>Learning theory</topic><topic>Mean square errors</topic><topic>Mineral industry</topic><topic>Mining industry</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Production capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hongze</creatorcontrib><creatorcontrib>Xu, Zhihai</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Pan, Tao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hongze</au><au>Xu, Zhihai</au><au>Li, Qi</au><au>Pan, Tao</au><au>Köker, Raşit</au><au>Raşit Köker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>5557831</spage><epage>5557831</epage><pages>5557831-5557831</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>34122532</pmid><doi>10.1155/2021/5557831</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4991-3869</orcidid><orcidid>https://orcid.org/0000-0002-6447-8893</orcidid><orcidid>https://orcid.org/0000-0003-2565-9648</orcidid><orcidid>https://orcid.org/0000-0002-1900-4656</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.5557831-5557831 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8169252 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Algorithms Analysis Artificial neural networks Automation Chain conveyors Chains Coal mines Coal mining Conveying machinery Cooperation Cost function Efficiency Entropy (Information theory) Expected values Friction stir welding Genetic algorithms Hydraulics Industrial production Learning theory Mean square errors Mineral industry Mining industry Neural networks Optimization Process controls Process parameters Production capacity |
title | Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Process%20Control%20Parameters%20for%20Fully%20Mechanized%20Mining%20Face%20Based%20on%20ANN%20and%20GA&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Zhao,%20Hongze&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=5557831&rft.epage=5557831&rft.pages=5557831-5557831&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2021/5557831&rft_dat=%3Cgale_pubme%3EA696896744%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2537373189&rft_id=info:pmid/34122532&rft_galeid=A696896744&rfr_iscdi=true |