Loading…
Provoking a Cultural Shift in Data Quality
Ecological studies require quality data to describe the nature of ecological processes and to advance understanding of ecosystem change. Increasing access to big data has magnified both the burden and the complexity of ensuring quality data. The costs of errors in ecology include low use of data, in...
Saved in:
Published in: | Bioscience 2021-06, Vol.71 (6), p.647-657 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83 |
container_end_page | 657 |
container_issue | 6 |
container_start_page | 647 |
container_title | Bioscience |
container_volume | 71 |
creator | MCCORD, SARAH E. WEBB, NICHOLAS P. VAN ZEE, JUSTIN W. BURNETT, SARAH H. CHRISTENSEN, ERICA M. COURTRIGHT, ERICHA M. LANEY, CHRISTINE M. LUNCH, CLAIRE MAXWELL, CONNIE KARL, JASON W. SLAUGHTER, AMALIA STAUFFER, NELSON G. TWEEDIE, CRAIG |
description | Ecological studies require quality data to describe the nature of ecological processes and to advance understanding of ecosystem change. Increasing access to big data has magnified both the burden and the complexity of ensuring quality data. The costs of errors in ecology include low use of data, increased time spent cleaning data, and poor reproducibility that can result in a misunderstanding of ecosystem processes and dynamics, all of which can erode the efficacy of and trust in ecological research. Although conceptual and technological advances have improved ecological data access and management, a cultural shift is needed to embed data quality as a cultural practice. We present a comprehensive data quality framework to evoke this cultural shift. The data quality framework flexibly supports different collaboration models, supports all types of ecological data, and can be used to describe data quality within both short- and long-term ecological studies. |
doi_str_mv | 10.1093/biosci/biab020 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8169311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27078740</jstor_id><oup_id>10.1093/biosci/biab020</oup_id><sourcerecordid>27078740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83</originalsourceid><addsrcrecordid>eNqFkc9LHDEYhoNU6nbttbeWAS9WGP3ye-YiyLZqQaiinkM2TXaznZ2syczC_vdGZl1aL54-Qp48eZMXoS8YTjHU9GzqQzI-Dz0FAntohDnhJSWMfUAjABAl5aI6QJ9SWuQlZrT-iA4og4pBLUfo5DaGdfjr21mhi0nfdH3UTXE_964rfFv80J0u7nrd-G5ziPadbpL9vJ1j9Hj582FyXd78vvo1ubgpDQfZlRQzYbjV-QJpXSWMsRUVzuDaYSkqyjEQrTnmtQBGpk6bymnCpTbcSZbZMTofvKt-urR_jG27nEmtol_quFFBe_X_TuvnahbWqsKiphhnwfFWEMNTb1Onlj4Z2zS6taFPigiBgRNWi_dRTqVgGLJ4jI7eoIvQxzb_hCI154SCJC_hTwfKxJBStG6XG4N6aUwNjaltY_nAt39fu8NfK8rA9wEI_ep92deBXaQuxB1NJMhKMqDPBhqphw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955230728</pqid></control><display><type>article</type><title>Provoking a Cultural Shift in Data Quality</title><source>Oxford Journals Online</source><creator>MCCORD, SARAH E. ; WEBB, NICHOLAS P. ; VAN ZEE, JUSTIN W. ; BURNETT, SARAH H. ; CHRISTENSEN, ERICA M. ; COURTRIGHT, ERICHA M. ; LANEY, CHRISTINE M. ; LUNCH, CLAIRE ; MAXWELL, CONNIE ; KARL, JASON W. ; SLAUGHTER, AMALIA ; STAUFFER, NELSON G. ; TWEEDIE, CRAIG</creator><creatorcontrib>MCCORD, SARAH E. ; WEBB, NICHOLAS P. ; VAN ZEE, JUSTIN W. ; BURNETT, SARAH H. ; CHRISTENSEN, ERICA M. ; COURTRIGHT, ERICHA M. ; LANEY, CHRISTINE M. ; LUNCH, CLAIRE ; MAXWELL, CONNIE ; KARL, JASON W. ; SLAUGHTER, AMALIA ; STAUFFER, NELSON G. ; TWEEDIE, CRAIG</creatorcontrib><description>Ecological studies require quality data to describe the nature of ecological processes and to advance understanding of ecosystem change. Increasing access to big data has magnified both the burden and the complexity of ensuring quality data. The costs of errors in ecology include low use of data, increased time spent cleaning data, and poor reproducibility that can result in a misunderstanding of ecosystem processes and dynamics, all of which can erode the efficacy of and trust in ecological research. Although conceptual and technological advances have improved ecological data access and management, a cultural shift is needed to embed data quality as a cultural practice. We present a comprehensive data quality framework to evoke this cultural shift. The data quality framework flexibly supports different collaboration models, supports all types of ecological data, and can be used to describe data quality within both short- and long-term ecological studies.</description><identifier>ISSN: 0006-3568</identifier><identifier>ISSN: 1525-3244</identifier><identifier>EISSN: 1525-3244</identifier><identifier>DOI: 10.1093/biosci/biab020</identifier><identifier>PMID: 34084097</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Big Data ; cleaning ; data quality ; Ecological research ; Ecological studies ; ecosystems ; Environmental changes ; information management ; Professional Biologist</subject><ispartof>Bioscience, 2021-06, Vol.71 (6), p.647-657</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Institute of Biological Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83</citedby><cites>FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83</cites><orcidid>0000-0002-3409-8881 ; 0000-0001-8753-6593 ; 0000-0002-5635-2502 ; 0000-0002-2181-4543 ; 0000-0002-4755-2625 ; 0000-0003-0664-5662 ; 0000-0002-3326-3806 ; 0000-0002-4944-2083 ; 0000-0001-9355-5512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34084097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MCCORD, SARAH E.</creatorcontrib><creatorcontrib>WEBB, NICHOLAS P.</creatorcontrib><creatorcontrib>VAN ZEE, JUSTIN W.</creatorcontrib><creatorcontrib>BURNETT, SARAH H.</creatorcontrib><creatorcontrib>CHRISTENSEN, ERICA M.</creatorcontrib><creatorcontrib>COURTRIGHT, ERICHA M.</creatorcontrib><creatorcontrib>LANEY, CHRISTINE M.</creatorcontrib><creatorcontrib>LUNCH, CLAIRE</creatorcontrib><creatorcontrib>MAXWELL, CONNIE</creatorcontrib><creatorcontrib>KARL, JASON W.</creatorcontrib><creatorcontrib>SLAUGHTER, AMALIA</creatorcontrib><creatorcontrib>STAUFFER, NELSON G.</creatorcontrib><creatorcontrib>TWEEDIE, CRAIG</creatorcontrib><title>Provoking a Cultural Shift in Data Quality</title><title>Bioscience</title><addtitle>Bioscience</addtitle><description>Ecological studies require quality data to describe the nature of ecological processes and to advance understanding of ecosystem change. Increasing access to big data has magnified both the burden and the complexity of ensuring quality data. The costs of errors in ecology include low use of data, increased time spent cleaning data, and poor reproducibility that can result in a misunderstanding of ecosystem processes and dynamics, all of which can erode the efficacy of and trust in ecological research. Although conceptual and technological advances have improved ecological data access and management, a cultural shift is needed to embed data quality as a cultural practice. We present a comprehensive data quality framework to evoke this cultural shift. The data quality framework flexibly supports different collaboration models, supports all types of ecological data, and can be used to describe data quality within both short- and long-term ecological studies.</description><subject>Big Data</subject><subject>cleaning</subject><subject>data quality</subject><subject>Ecological research</subject><subject>Ecological studies</subject><subject>ecosystems</subject><subject>Environmental changes</subject><subject>information management</subject><subject>Professional Biologist</subject><issn>0006-3568</issn><issn>1525-3244</issn><issn>1525-3244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc9LHDEYhoNU6nbttbeWAS9WGP3ye-YiyLZqQaiinkM2TXaznZ2syczC_vdGZl1aL54-Qp48eZMXoS8YTjHU9GzqQzI-Dz0FAntohDnhJSWMfUAjABAl5aI6QJ9SWuQlZrT-iA4og4pBLUfo5DaGdfjr21mhi0nfdH3UTXE_964rfFv80J0u7nrd-G5ziPadbpL9vJ1j9Hj582FyXd78vvo1ubgpDQfZlRQzYbjV-QJpXSWMsRUVzuDaYSkqyjEQrTnmtQBGpk6bymnCpTbcSZbZMTofvKt-urR_jG27nEmtol_quFFBe_X_TuvnahbWqsKiphhnwfFWEMNTb1Onlj4Z2zS6taFPigiBgRNWi_dRTqVgGLJ4jI7eoIvQxzb_hCI154SCJC_hTwfKxJBStG6XG4N6aUwNjaltY_nAt39fu8NfK8rA9wEI_ep92deBXaQuxB1NJMhKMqDPBhqphw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>MCCORD, SARAH E.</creator><creator>WEBB, NICHOLAS P.</creator><creator>VAN ZEE, JUSTIN W.</creator><creator>BURNETT, SARAH H.</creator><creator>CHRISTENSEN, ERICA M.</creator><creator>COURTRIGHT, ERICHA M.</creator><creator>LANEY, CHRISTINE M.</creator><creator>LUNCH, CLAIRE</creator><creator>MAXWELL, CONNIE</creator><creator>KARL, JASON W.</creator><creator>SLAUGHTER, AMALIA</creator><creator>STAUFFER, NELSON G.</creator><creator>TWEEDIE, CRAIG</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3409-8881</orcidid><orcidid>https://orcid.org/0000-0001-8753-6593</orcidid><orcidid>https://orcid.org/0000-0002-5635-2502</orcidid><orcidid>https://orcid.org/0000-0002-2181-4543</orcidid><orcidid>https://orcid.org/0000-0002-4755-2625</orcidid><orcidid>https://orcid.org/0000-0003-0664-5662</orcidid><orcidid>https://orcid.org/0000-0002-3326-3806</orcidid><orcidid>https://orcid.org/0000-0002-4944-2083</orcidid><orcidid>https://orcid.org/0000-0001-9355-5512</orcidid></search><sort><creationdate>20210601</creationdate><title>Provoking a Cultural Shift in Data Quality</title><author>MCCORD, SARAH E. ; WEBB, NICHOLAS P. ; VAN ZEE, JUSTIN W. ; BURNETT, SARAH H. ; CHRISTENSEN, ERICA M. ; COURTRIGHT, ERICHA M. ; LANEY, CHRISTINE M. ; LUNCH, CLAIRE ; MAXWELL, CONNIE ; KARL, JASON W. ; SLAUGHTER, AMALIA ; STAUFFER, NELSON G. ; TWEEDIE, CRAIG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big Data</topic><topic>cleaning</topic><topic>data quality</topic><topic>Ecological research</topic><topic>Ecological studies</topic><topic>ecosystems</topic><topic>Environmental changes</topic><topic>information management</topic><topic>Professional Biologist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MCCORD, SARAH E.</creatorcontrib><creatorcontrib>WEBB, NICHOLAS P.</creatorcontrib><creatorcontrib>VAN ZEE, JUSTIN W.</creatorcontrib><creatorcontrib>BURNETT, SARAH H.</creatorcontrib><creatorcontrib>CHRISTENSEN, ERICA M.</creatorcontrib><creatorcontrib>COURTRIGHT, ERICHA M.</creatorcontrib><creatorcontrib>LANEY, CHRISTINE M.</creatorcontrib><creatorcontrib>LUNCH, CLAIRE</creatorcontrib><creatorcontrib>MAXWELL, CONNIE</creatorcontrib><creatorcontrib>KARL, JASON W.</creatorcontrib><creatorcontrib>SLAUGHTER, AMALIA</creatorcontrib><creatorcontrib>STAUFFER, NELSON G.</creatorcontrib><creatorcontrib>TWEEDIE, CRAIG</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MCCORD, SARAH E.</au><au>WEBB, NICHOLAS P.</au><au>VAN ZEE, JUSTIN W.</au><au>BURNETT, SARAH H.</au><au>CHRISTENSEN, ERICA M.</au><au>COURTRIGHT, ERICHA M.</au><au>LANEY, CHRISTINE M.</au><au>LUNCH, CLAIRE</au><au>MAXWELL, CONNIE</au><au>KARL, JASON W.</au><au>SLAUGHTER, AMALIA</au><au>STAUFFER, NELSON G.</au><au>TWEEDIE, CRAIG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Provoking a Cultural Shift in Data Quality</atitle><jtitle>Bioscience</jtitle><addtitle>Bioscience</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>71</volume><issue>6</issue><spage>647</spage><epage>657</epage><pages>647-657</pages><issn>0006-3568</issn><issn>1525-3244</issn><eissn>1525-3244</eissn><abstract>Ecological studies require quality data to describe the nature of ecological processes and to advance understanding of ecosystem change. Increasing access to big data has magnified both the burden and the complexity of ensuring quality data. The costs of errors in ecology include low use of data, increased time spent cleaning data, and poor reproducibility that can result in a misunderstanding of ecosystem processes and dynamics, all of which can erode the efficacy of and trust in ecological research. Although conceptual and technological advances have improved ecological data access and management, a cultural shift is needed to embed data quality as a cultural practice. We present a comprehensive data quality framework to evoke this cultural shift. The data quality framework flexibly supports different collaboration models, supports all types of ecological data, and can be used to describe data quality within both short- and long-term ecological studies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34084097</pmid><doi>10.1093/biosci/biab020</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3409-8881</orcidid><orcidid>https://orcid.org/0000-0001-8753-6593</orcidid><orcidid>https://orcid.org/0000-0002-5635-2502</orcidid><orcidid>https://orcid.org/0000-0002-2181-4543</orcidid><orcidid>https://orcid.org/0000-0002-4755-2625</orcidid><orcidid>https://orcid.org/0000-0003-0664-5662</orcidid><orcidid>https://orcid.org/0000-0002-3326-3806</orcidid><orcidid>https://orcid.org/0000-0002-4944-2083</orcidid><orcidid>https://orcid.org/0000-0001-9355-5512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3568 |
ispartof | Bioscience, 2021-06, Vol.71 (6), p.647-657 |
issn | 0006-3568 1525-3244 1525-3244 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8169311 |
source | Oxford Journals Online |
subjects | Big Data cleaning data quality Ecological research Ecological studies ecosystems Environmental changes information management Professional Biologist |
title | Provoking a Cultural Shift in Data Quality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Provoking%20a%20Cultural%20Shift%20in%20Data%20Quality&rft.jtitle=Bioscience&rft.au=MCCORD,%20SARAH%20E.&rft.date=2021-06-01&rft.volume=71&rft.issue=6&rft.spage=647&rft.epage=657&rft.pages=647-657&rft.issn=0006-3568&rft.eissn=1525-3244&rft_id=info:doi/10.1093/biosci/biab020&rft_dat=%3Cjstor_pubme%3E27078740%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-3146c5ea8407ef86cce836fc19f176835102aa51596042bfac8fa257ac5f74e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955230728&rft_id=info:pmid/34084097&rft_jstor_id=27078740&rft_oup_id=10.1093/biosci/biab020&rfr_iscdi=true |