Loading…

Site-1 protease controls osteoclastogenesis by mediating LC3 transcription

Site-1 protease (S1P) is a Golgi-located protein that activates unique membrane-bound latent transcription factors, and it plays an indispensable role in endoplasmic reticulum stress, lipid metabolism, inflammatory response and lysosome function. A patient with S1P mutation exhibits severe skeletal...

Full description

Saved in:
Bibliographic Details
Published in:Cell death and differentiation 2021-06, Vol.28 (6), p.2001-2018
Main Authors: Zheng, Zeyu, Zhang, Xuyang, Huang, Bao, Liu, Junhui, Wei, Xiaoan, Shan, Zhi, Wu, Hao, Feng, Zhenhua, Chen, Yilei, Fan, Shunwu, Zhao, Fengdong, Chen, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Site-1 protease (S1P) is a Golgi-located protein that activates unique membrane-bound latent transcription factors, and it plays an indispensable role in endoplasmic reticulum stress, lipid metabolism, inflammatory response and lysosome function. A patient with S1P mutation exhibits severe skeletal dysplasia with kyphoscoliosis, dysmorphic facial features and pectus carinatum. However, whether S1P regulates bone remodeling by affecting osteoclastogenesis remains elusive. Here, we show that S1P is indeed a positive regulator of osteoclastogenesis. S1P ablation in mice led to significant osteosclerosis compared with wild-type littermates. Mechanistically, S1P showed upregulated during osteoclastogenesis and was identified as a direct target of miR-9-5p. S1P deletion in bone marrow monocytes (BMMs) inhibited ATF6 and SREBP2 maturation, which subsequently impeded CHOP/SREBP2-complex-induced LC3 expression and autophagy flux. Consistently, transfection of LC3 adenovirus evidently rescued osteoclastogenesis in S1P-deficient BMMs. We then identified the interaction regions between CHOP and SREBP2 by Co-immunoprecipitation (Co-IP) and molecular docking. Furthermore, S1P deletion or inhibitor efficaciously rescued ovariectomized (OVX)- and LPS-induced bone loss in vivo. Collectively, we showed that S1P regulates osteoclast differentiation in a LC3 dependent manner and so is a potential therapy target for osteoporosis.
ISSN:1350-9047
1476-5403
DOI:10.1038/s41418-020-00731-6