Loading…
Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo
Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetr...
Saved in:
Published in: | Bioconjugate chemistry 2021-05, Vol.32 (5), p.928-941 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3 |
container_end_page | 941 |
container_issue | 5 |
container_start_page | 928 |
container_title | Bioconjugate chemistry |
container_volume | 32 |
creator | DeJulius, Carlisle R Dollinger, Bryan R Kavanaugh, Taylor E Dailing, Eric Yu, Fang Gulati, Shubham Miskalis, Angelo Zhang, Caiyun Uddin, Jashim Dikalov, Sergey Duvall, Craig L |
description | Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments. |
doi_str_mv | 10.1021/acs.bioconjchem.1c00081 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515682014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYh_wF8ASN9yk-CNOnBukqSowaaiIDW4t1znuXCV2sN1o5dfPW0s1uOHKlvyc5_jVWxRvCZ4RTMkHpeNsZb32bqNvYZgRjTEW5FlxSjjFZSUIfZ7vuGIlEZieFGcxbjLSEkFfFieMiYZiTE6LaTkmO9jf1q2RcujCJevvbKdcQjeLr9-WaO5H3-8GCMj4gL6D0slOgJZ3uzU4dD2CthDRtVYTuPXe0j1qyktnejUMKvmwQwtjQKeIrEM_7eRfFS-M6iO8PpznxY9Pi5v5l_Jq-flyfnFVqkq0qRRVRzveGFBQ17oyQhMioMGcQlPVWKtV22LDQfGMMZJDcUIxVauGYS20YufFx7133K4G6DS4FFQvx2AHFXbSKyv_fnH2Vq79JAURosZNFrw_CIL_tYWY5GCjhr5XDvw2yryQ14JiUmX03T_oxm-Dy_EyxWrOWv4obPaUDj7GAOb4GYLlQ7cydyufdCsP3ebJN0-zHOf-lJkBtgceDMfd_9PeAxmIt5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536539507</pqid></control><display><type>article</type><title>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>DeJulius, Carlisle R ; Dollinger, Bryan R ; Kavanaugh, Taylor E ; Dailing, Eric ; Yu, Fang ; Gulati, Shubham ; Miskalis, Angelo ; Zhang, Caiyun ; Uddin, Jashim ; Dikalov, Sergey ; Duvall, Craig L</creator><creatorcontrib>DeJulius, Carlisle R ; Dollinger, Bryan R ; Kavanaugh, Taylor E ; Dailing, Eric ; Yu, Fang ; Gulati, Shubham ; Miskalis, Angelo ; Zhang, Caiyun ; Uddin, Jashim ; Dikalov, Sergey ; Duvall, Craig L</creatorcontrib><description>Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.</description><identifier>ISSN: 1043-1802</identifier><identifier>ISSN: 1520-4812</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.1c00081</identifier><identifier>PMID: 33872001</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Anti-Inflammatory Agents - administration & dosage ; Anti-Inflammatory Agents - chemistry ; Anti-Inflammatory Agents - pharmacokinetics ; Anti-Inflammatory Agents - pharmacology ; Antioxidants ; Antioxidants - administration & dosage ; Antioxidants - chemistry ; Antioxidants - pharmacology ; Bioavailability ; Biological activity ; Cell death ; Copolymerization ; Copolymers ; Cyclic N-Oxides - chemistry ; Density ; Free Radical Scavengers - chemistry ; Free Radical Scavengers - pharmacology ; Hydrophobicity ; Inflammation - drug therapy ; Inflammatory diseases ; Lipids ; Mice ; Microparticles ; Mimetic compounds ; Molecular weight ; Nanoparticles ; Optimization ; Oxidative stress ; Oxidative Stress - drug effects ; Polymers ; Polymers - chemistry ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Scavenging ; Solubility ; Superoxide dismutase ; Tumor necrosis factor-α</subject><ispartof>Bioconjugate chemistry, 2021-05, Vol.32 (5), p.928-941</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society May 19, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</citedby><cites>FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</cites><orcidid>0000-0003-3979-0620 ; 0000-0002-2299-7783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33872001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeJulius, Carlisle R</creatorcontrib><creatorcontrib>Dollinger, Bryan R</creatorcontrib><creatorcontrib>Kavanaugh, Taylor E</creatorcontrib><creatorcontrib>Dailing, Eric</creatorcontrib><creatorcontrib>Yu, Fang</creatorcontrib><creatorcontrib>Gulati, Shubham</creatorcontrib><creatorcontrib>Miskalis, Angelo</creatorcontrib><creatorcontrib>Zhang, Caiyun</creatorcontrib><creatorcontrib>Uddin, Jashim</creatorcontrib><creatorcontrib>Dikalov, Sergey</creatorcontrib><creatorcontrib>Duvall, Craig L</creatorcontrib><title>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents - administration & dosage</subject><subject>Anti-Inflammatory Agents - chemistry</subject><subject>Anti-Inflammatory Agents - pharmacokinetics</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - administration & dosage</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - pharmacology</subject><subject>Bioavailability</subject><subject>Biological activity</subject><subject>Cell death</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Cyclic N-Oxides - chemistry</subject><subject>Density</subject><subject>Free Radical Scavengers - chemistry</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Hydrophobicity</subject><subject>Inflammation - drug therapy</subject><subject>Inflammatory diseases</subject><subject>Lipids</subject><subject>Mice</subject><subject>Microparticles</subject><subject>Mimetic compounds</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scavenging</subject><subject>Solubility</subject><subject>Superoxide dismutase</subject><subject>Tumor necrosis factor-α</subject><issn>1043-1802</issn><issn>1520-4812</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkV1v0zAUhiMEYh_wF8ASN9yk-CNOnBukqSowaaiIDW4t1znuXCV2sN1o5dfPW0s1uOHKlvyc5_jVWxRvCZ4RTMkHpeNsZb32bqNvYZgRjTEW5FlxSjjFZSUIfZ7vuGIlEZieFGcxbjLSEkFfFieMiYZiTE6LaTkmO9jf1q2RcujCJevvbKdcQjeLr9-WaO5H3-8GCMj4gL6D0slOgJZ3uzU4dD2CthDRtVYTuPXe0j1qyktnejUMKvmwQwtjQKeIrEM_7eRfFS-M6iO8PpznxY9Pi5v5l_Jq-flyfnFVqkq0qRRVRzveGFBQ17oyQhMioMGcQlPVWKtV22LDQfGMMZJDcUIxVauGYS20YufFx7133K4G6DS4FFQvx2AHFXbSKyv_fnH2Vq79JAURosZNFrw_CIL_tYWY5GCjhr5XDvw2yryQ14JiUmX03T_oxm-Dy_EyxWrOWv4obPaUDj7GAOb4GYLlQ7cydyufdCsP3ebJN0-zHOf-lJkBtgceDMfd_9PeAxmIt5o</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>DeJulius, Carlisle R</creator><creator>Dollinger, Bryan R</creator><creator>Kavanaugh, Taylor E</creator><creator>Dailing, Eric</creator><creator>Yu, Fang</creator><creator>Gulati, Shubham</creator><creator>Miskalis, Angelo</creator><creator>Zhang, Caiyun</creator><creator>Uddin, Jashim</creator><creator>Dikalov, Sergey</creator><creator>Duvall, Craig L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3979-0620</orcidid><orcidid>https://orcid.org/0000-0002-2299-7783</orcidid></search><sort><creationdate>20210519</creationdate><title>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</title><author>DeJulius, Carlisle R ; Dollinger, Bryan R ; Kavanaugh, Taylor E ; Dailing, Eric ; Yu, Fang ; Gulati, Shubham ; Miskalis, Angelo ; Zhang, Caiyun ; Uddin, Jashim ; Dikalov, Sergey ; Duvall, Craig L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents - administration & dosage</topic><topic>Anti-Inflammatory Agents - chemistry</topic><topic>Anti-Inflammatory Agents - pharmacokinetics</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - administration & dosage</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - pharmacology</topic><topic>Bioavailability</topic><topic>Biological activity</topic><topic>Cell death</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Cyclic N-Oxides - chemistry</topic><topic>Density</topic><topic>Free Radical Scavengers - chemistry</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Hydrophobicity</topic><topic>Inflammation - drug therapy</topic><topic>Inflammatory diseases</topic><topic>Lipids</topic><topic>Mice</topic><topic>Microparticles</topic><topic>Mimetic compounds</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scavenging</topic><topic>Solubility</topic><topic>Superoxide dismutase</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeJulius, Carlisle R</creatorcontrib><creatorcontrib>Dollinger, Bryan R</creatorcontrib><creatorcontrib>Kavanaugh, Taylor E</creatorcontrib><creatorcontrib>Dailing, Eric</creatorcontrib><creatorcontrib>Yu, Fang</creatorcontrib><creatorcontrib>Gulati, Shubham</creatorcontrib><creatorcontrib>Miskalis, Angelo</creatorcontrib><creatorcontrib>Zhang, Caiyun</creatorcontrib><creatorcontrib>Uddin, Jashim</creatorcontrib><creatorcontrib>Dikalov, Sergey</creatorcontrib><creatorcontrib>Duvall, Craig L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeJulius, Carlisle R</au><au>Dollinger, Bryan R</au><au>Kavanaugh, Taylor E</au><au>Dailing, Eric</au><au>Yu, Fang</au><au>Gulati, Shubham</au><au>Miskalis, Angelo</au><au>Zhang, Caiyun</au><au>Uddin, Jashim</au><au>Dikalov, Sergey</au><au>Duvall, Craig L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2021-05-19</date><risdate>2021</risdate><volume>32</volume><issue>5</issue><spage>928</spage><epage>941</epage><pages>928-941</pages><issn>1043-1802</issn><issn>1520-4812</issn><eissn>1520-4812</eissn><abstract>Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33872001</pmid><doi>10.1021/acs.bioconjchem.1c00081</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3979-0620</orcidid><orcidid>https://orcid.org/0000-0002-2299-7783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2021-05, Vol.32 (5), p.928-941 |
issn | 1043-1802 1520-4812 1520-4812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188607 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Anti-Inflammatory Agents - administration & dosage Anti-Inflammatory Agents - chemistry Anti-Inflammatory Agents - pharmacokinetics Anti-Inflammatory Agents - pharmacology Antioxidants Antioxidants - administration & dosage Antioxidants - chemistry Antioxidants - pharmacology Bioavailability Biological activity Cell death Copolymerization Copolymers Cyclic N-Oxides - chemistry Density Free Radical Scavengers - chemistry Free Radical Scavengers - pharmacology Hydrophobicity Inflammation - drug therapy Inflammatory diseases Lipids Mice Microparticles Mimetic compounds Molecular weight Nanoparticles Optimization Oxidative stress Oxidative Stress - drug effects Polymers Polymers - chemistry Reactive oxygen species Reactive Oxygen Species - metabolism Scavenging Solubility Superoxide dismutase Tumor necrosis factor-α |
title | Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20an%20Antioxidant%20TEMPO%20Copolymer%20for%20Reactive%20Oxygen%20Species%20Scavenging%20and%20Anti-Inflammatory%20Effects%20in%20Vivo&rft.jtitle=Bioconjugate%20chemistry&rft.au=DeJulius,%20Carlisle%20R&rft.date=2021-05-19&rft.volume=32&rft.issue=5&rft.spage=928&rft.epage=941&rft.pages=928-941&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.1c00081&rft_dat=%3Cproquest_pubme%3E2515682014%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536539507&rft_id=info:pmid/33872001&rfr_iscdi=true |