Loading…

Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo

Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetr...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2021-05, Vol.32 (5), p.928-941
Main Authors: DeJulius, Carlisle R, Dollinger, Bryan R, Kavanaugh, Taylor E, Dailing, Eric, Yu, Fang, Gulati, Shubham, Miskalis, Angelo, Zhang, Caiyun, Uddin, Jashim, Dikalov, Sergey, Duvall, Craig L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3
cites cdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3
container_end_page 941
container_issue 5
container_start_page 928
container_title Bioconjugate chemistry
container_volume 32
creator DeJulius, Carlisle R
Dollinger, Bryan R
Kavanaugh, Taylor E
Dailing, Eric
Yu, Fang
Gulati, Shubham
Miskalis, Angelo
Zhang, Caiyun
Uddin, Jashim
Dikalov, Sergey
Duvall, Craig L
description Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly­(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly­(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly­(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly­(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.
doi_str_mv 10.1021/acs.bioconjchem.1c00081
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515682014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYh_wF8ASN9yk-CNOnBukqSowaaiIDW4t1znuXCV2sN1o5dfPW0s1uOHKlvyc5_jVWxRvCZ4RTMkHpeNsZb32bqNvYZgRjTEW5FlxSjjFZSUIfZ7vuGIlEZieFGcxbjLSEkFfFieMiYZiTE6LaTkmO9jf1q2RcujCJevvbKdcQjeLr9-WaO5H3-8GCMj4gL6D0slOgJZ3uzU4dD2CthDRtVYTuPXe0j1qyktnejUMKvmwQwtjQKeIrEM_7eRfFS-M6iO8PpznxY9Pi5v5l_Jq-flyfnFVqkq0qRRVRzveGFBQ17oyQhMioMGcQlPVWKtV22LDQfGMMZJDcUIxVauGYS20YufFx7133K4G6DS4FFQvx2AHFXbSKyv_fnH2Vq79JAURosZNFrw_CIL_tYWY5GCjhr5XDvw2yryQ14JiUmX03T_oxm-Dy_EyxWrOWv4obPaUDj7GAOb4GYLlQ7cydyufdCsP3ebJN0-zHOf-lJkBtgceDMfd_9PeAxmIt5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536539507</pqid></control><display><type>article</type><title>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>DeJulius, Carlisle R ; Dollinger, Bryan R ; Kavanaugh, Taylor E ; Dailing, Eric ; Yu, Fang ; Gulati, Shubham ; Miskalis, Angelo ; Zhang, Caiyun ; Uddin, Jashim ; Dikalov, Sergey ; Duvall, Craig L</creator><creatorcontrib>DeJulius, Carlisle R ; Dollinger, Bryan R ; Kavanaugh, Taylor E ; Dailing, Eric ; Yu, Fang ; Gulati, Shubham ; Miskalis, Angelo ; Zhang, Caiyun ; Uddin, Jashim ; Dikalov, Sergey ; Duvall, Craig L</creatorcontrib><description>Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly­(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly­(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly­(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly­(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.</description><identifier>ISSN: 1043-1802</identifier><identifier>ISSN: 1520-4812</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.1c00081</identifier><identifier>PMID: 33872001</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Anti-Inflammatory Agents - administration &amp; dosage ; Anti-Inflammatory Agents - chemistry ; Anti-Inflammatory Agents - pharmacokinetics ; Anti-Inflammatory Agents - pharmacology ; Antioxidants ; Antioxidants - administration &amp; dosage ; Antioxidants - chemistry ; Antioxidants - pharmacology ; Bioavailability ; Biological activity ; Cell death ; Copolymerization ; Copolymers ; Cyclic N-Oxides - chemistry ; Density ; Free Radical Scavengers - chemistry ; Free Radical Scavengers - pharmacology ; Hydrophobicity ; Inflammation - drug therapy ; Inflammatory diseases ; Lipids ; Mice ; Microparticles ; Mimetic compounds ; Molecular weight ; Nanoparticles ; Optimization ; Oxidative stress ; Oxidative Stress - drug effects ; Polymers ; Polymers - chemistry ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Scavenging ; Solubility ; Superoxide dismutase ; Tumor necrosis factor-α</subject><ispartof>Bioconjugate chemistry, 2021-05, Vol.32 (5), p.928-941</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society May 19, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</citedby><cites>FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</cites><orcidid>0000-0003-3979-0620 ; 0000-0002-2299-7783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33872001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeJulius, Carlisle R</creatorcontrib><creatorcontrib>Dollinger, Bryan R</creatorcontrib><creatorcontrib>Kavanaugh, Taylor E</creatorcontrib><creatorcontrib>Dailing, Eric</creatorcontrib><creatorcontrib>Yu, Fang</creatorcontrib><creatorcontrib>Gulati, Shubham</creatorcontrib><creatorcontrib>Miskalis, Angelo</creatorcontrib><creatorcontrib>Zhang, Caiyun</creatorcontrib><creatorcontrib>Uddin, Jashim</creatorcontrib><creatorcontrib>Dikalov, Sergey</creatorcontrib><creatorcontrib>Duvall, Craig L</creatorcontrib><title>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly­(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly­(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly­(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly­(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents - administration &amp; dosage</subject><subject>Anti-Inflammatory Agents - chemistry</subject><subject>Anti-Inflammatory Agents - pharmacokinetics</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - administration &amp; dosage</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - pharmacology</subject><subject>Bioavailability</subject><subject>Biological activity</subject><subject>Cell death</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Cyclic N-Oxides - chemistry</subject><subject>Density</subject><subject>Free Radical Scavengers - chemistry</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Hydrophobicity</subject><subject>Inflammation - drug therapy</subject><subject>Inflammatory diseases</subject><subject>Lipids</subject><subject>Mice</subject><subject>Microparticles</subject><subject>Mimetic compounds</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scavenging</subject><subject>Solubility</subject><subject>Superoxide dismutase</subject><subject>Tumor necrosis factor-α</subject><issn>1043-1802</issn><issn>1520-4812</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkV1v0zAUhiMEYh_wF8ASN9yk-CNOnBukqSowaaiIDW4t1znuXCV2sN1o5dfPW0s1uOHKlvyc5_jVWxRvCZ4RTMkHpeNsZb32bqNvYZgRjTEW5FlxSjjFZSUIfZ7vuGIlEZieFGcxbjLSEkFfFieMiYZiTE6LaTkmO9jf1q2RcujCJevvbKdcQjeLr9-WaO5H3-8GCMj4gL6D0slOgJZ3uzU4dD2CthDRtVYTuPXe0j1qyktnejUMKvmwQwtjQKeIrEM_7eRfFS-M6iO8PpznxY9Pi5v5l_Jq-flyfnFVqkq0qRRVRzveGFBQ17oyQhMioMGcQlPVWKtV22LDQfGMMZJDcUIxVauGYS20YufFx7133K4G6DS4FFQvx2AHFXbSKyv_fnH2Vq79JAURosZNFrw_CIL_tYWY5GCjhr5XDvw2yryQ14JiUmX03T_oxm-Dy_EyxWrOWv4obPaUDj7GAOb4GYLlQ7cydyufdCsP3ebJN0-zHOf-lJkBtgceDMfd_9PeAxmIt5o</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>DeJulius, Carlisle R</creator><creator>Dollinger, Bryan R</creator><creator>Kavanaugh, Taylor E</creator><creator>Dailing, Eric</creator><creator>Yu, Fang</creator><creator>Gulati, Shubham</creator><creator>Miskalis, Angelo</creator><creator>Zhang, Caiyun</creator><creator>Uddin, Jashim</creator><creator>Dikalov, Sergey</creator><creator>Duvall, Craig L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3979-0620</orcidid><orcidid>https://orcid.org/0000-0002-2299-7783</orcidid></search><sort><creationdate>20210519</creationdate><title>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</title><author>DeJulius, Carlisle R ; Dollinger, Bryan R ; Kavanaugh, Taylor E ; Dailing, Eric ; Yu, Fang ; Gulati, Shubham ; Miskalis, Angelo ; Zhang, Caiyun ; Uddin, Jashim ; Dikalov, Sergey ; Duvall, Craig L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents - administration &amp; dosage</topic><topic>Anti-Inflammatory Agents - chemistry</topic><topic>Anti-Inflammatory Agents - pharmacokinetics</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - administration &amp; dosage</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - pharmacology</topic><topic>Bioavailability</topic><topic>Biological activity</topic><topic>Cell death</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Cyclic N-Oxides - chemistry</topic><topic>Density</topic><topic>Free Radical Scavengers - chemistry</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Hydrophobicity</topic><topic>Inflammation - drug therapy</topic><topic>Inflammatory diseases</topic><topic>Lipids</topic><topic>Mice</topic><topic>Microparticles</topic><topic>Mimetic compounds</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scavenging</topic><topic>Solubility</topic><topic>Superoxide dismutase</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeJulius, Carlisle R</creatorcontrib><creatorcontrib>Dollinger, Bryan R</creatorcontrib><creatorcontrib>Kavanaugh, Taylor E</creatorcontrib><creatorcontrib>Dailing, Eric</creatorcontrib><creatorcontrib>Yu, Fang</creatorcontrib><creatorcontrib>Gulati, Shubham</creatorcontrib><creatorcontrib>Miskalis, Angelo</creatorcontrib><creatorcontrib>Zhang, Caiyun</creatorcontrib><creatorcontrib>Uddin, Jashim</creatorcontrib><creatorcontrib>Dikalov, Sergey</creatorcontrib><creatorcontrib>Duvall, Craig L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeJulius, Carlisle R</au><au>Dollinger, Bryan R</au><au>Kavanaugh, Taylor E</au><au>Dailing, Eric</au><au>Yu, Fang</au><au>Gulati, Shubham</au><au>Miskalis, Angelo</au><au>Zhang, Caiyun</au><au>Uddin, Jashim</au><au>Dikalov, Sergey</au><au>Duvall, Craig L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2021-05-19</date><risdate>2021</risdate><volume>32</volume><issue>5</issue><spage>928</spage><epage>941</epage><pages>928-941</pages><issn>1043-1802</issn><issn>1520-4812</issn><eissn>1520-4812</eissn><abstract>Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly­(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly­(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly­(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2 •– scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly­(TEMPO) formulation in O2 •– scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33872001</pmid><doi>10.1021/acs.bioconjchem.1c00081</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3979-0620</orcidid><orcidid>https://orcid.org/0000-0002-2299-7783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2021-05, Vol.32 (5), p.928-941
issn 1043-1802
1520-4812
1520-4812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8188607
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Anti-Inflammatory Agents - administration & dosage
Anti-Inflammatory Agents - chemistry
Anti-Inflammatory Agents - pharmacokinetics
Anti-Inflammatory Agents - pharmacology
Antioxidants
Antioxidants - administration & dosage
Antioxidants - chemistry
Antioxidants - pharmacology
Bioavailability
Biological activity
Cell death
Copolymerization
Copolymers
Cyclic N-Oxides - chemistry
Density
Free Radical Scavengers - chemistry
Free Radical Scavengers - pharmacology
Hydrophobicity
Inflammation - drug therapy
Inflammatory diseases
Lipids
Mice
Microparticles
Mimetic compounds
Molecular weight
Nanoparticles
Optimization
Oxidative stress
Oxidative Stress - drug effects
Polymers
Polymers - chemistry
Reactive oxygen species
Reactive Oxygen Species - metabolism
Scavenging
Solubility
Superoxide dismutase
Tumor necrosis factor-α
title Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20an%20Antioxidant%20TEMPO%20Copolymer%20for%20Reactive%20Oxygen%20Species%20Scavenging%20and%20Anti-Inflammatory%20Effects%20in%20Vivo&rft.jtitle=Bioconjugate%20chemistry&rft.au=DeJulius,%20Carlisle%20R&rft.date=2021-05-19&rft.volume=32&rft.issue=5&rft.spage=928&rft.epage=941&rft.pages=928-941&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.1c00081&rft_dat=%3Cproquest_pubme%3E2515682014%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a489t-84d2d57feae66c4f8c118e7052e7460cab990f5ea52d53187251202ab730c8ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536539507&rft_id=info:pmid/33872001&rfr_iscdi=true