Loading…

STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease

The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied...

Full description

Saved in:
Bibliographic Details
Published in:Clinical epigenetics 2021-12, Vol.13 (1), p.127-127, Article 127
Main Authors: Yu, Ya-Li, Chen, Meng, Zhu, Hua, Zhuo, Ming-Xing, Chen, Ping, Mao, Yu-Juan, Li, Lian-Yun, Zhao, Qiu, Wu, Min, Ye, Mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413
cites cdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413
container_end_page 127
container_issue 1
container_start_page 127
container_title Clinical epigenetics
container_volume 13
creator Yu, Ya-Li
Chen, Meng
Zhu, Hua
Zhuo, Ming-Xing
Chen, Ping
Mao, Yu-Juan
Li, Lian-Yun
Zhao, Qiu
Wu, Min
Ye, Mei
description The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.
doi_str_mv 10.1186/s13148-021-01101-w
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8194145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664837765</galeid><sourcerecordid>A664837765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIVqU_wAFZ4sIlxRM7jnNBWq1aqLSCSixny3Emu66ceImdrvbMj-OwZaEI--Cx5703ntHLstdArwCkeB-AAZc5LSCnABTy_bPsPCVkXlHJnp_iqjzLLkO4p2mxuq6BvszOGAcoCijPsx9f14s1ENzZDQ4YrdHOHciIm8npiIGslncF0UNL1p9vFrcpbuasGScb7bAh13eMUhI9MX6Io22miPMtbpHsdNz6WTTYQHxH7NA53fc6-vFAGr9HR1obUAd8lb3otAt4-XheZN9urtfLT_nqy8fb5WKVG15XMdfQCV2BRsFYYWopkYm6LWglEWvdGNlIUVS8pYJRI6rGtCi04F1D25ZqDuwi-3DU3U1Nj63B9GXt1G60vR4PymurnmYGu1Ub_6Ak1Bx4mQTePQqM_vuEIareBoPO6QH9FFRRclqC5JQl6Nt_oPd-GofU3oxiJU3jF39QG-1QpQn5VNfMomohBJesqsRc9uo_qLRb7G0aPHY2vT8hFEeCGX0II3anHoGq2T3q6B6V3KN-uUftE-nN39M5UX57hf0EHg6_Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543502216</pqid></control><display><type>article</type><title>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Ya-Li ; Chen, Meng ; Zhu, Hua ; Zhuo, Ming-Xing ; Chen, Ping ; Mao, Yu-Juan ; Li, Lian-Yun ; Zhao, Qiu ; Wu, Min ; Ye, Mei</creator><creatorcontrib>Yu, Ya-Li ; Chen, Meng ; Zhu, Hua ; Zhuo, Ming-Xing ; Chen, Ping ; Mao, Yu-Juan ; Li, Lian-Yun ; Zhao, Qiu ; Wu, Min ; Ye, Mei</creatorcontrib><description>The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.</description><identifier>ISSN: 1868-7075</identifier><identifier>ISSN: 1868-7083</identifier><identifier>EISSN: 1868-7083</identifier><identifier>EISSN: 1868-7075</identifier><identifier>DOI: 10.1186/s13148-021-01101-w</identifier><identifier>PMID: 34112215</identifier><language>eng</language><publisher>Germany: BioMed Central Ltd</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Animals ; China ; Colitis ; Colon ; Cytokines - genetics ; Dextran ; Dextran sulfate ; Disease Models, Animal ; DNA methylation ; DNA Methylation - genetics ; E1A-Associated p300 Protein - genetics ; Enhancers ; Epigenesis, Genetic - genetics ; Epigenetic inheritance ; Epigenetics ; Gastrointestinal diseases ; Gene expression ; Genetic transcription ; Genetics ; Humans ; Inflammation ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - genetics ; Intestine ; Lymphocytes ; Mice ; Pathogenesis ; Phosphoproteins - genetics ; Proteins ; Stat1 protein ; STAT1 Transcription Factor - genetics ; Sulfates ; Tumor necrosis factor-α</subject><ispartof>Clinical epigenetics, 2021-12, Vol.13 (1), p.127-127, Article 127</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</citedby><cites>FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</cites><orcidid>0000-0002-9393-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2543502216?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34112215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Ya-Li</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Zhuo, Ming-Xing</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Mao, Yu-Juan</creatorcontrib><creatorcontrib>Li, Lian-Yun</creatorcontrib><creatorcontrib>Zhao, Qiu</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Ye, Mei</creatorcontrib><title>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</title><title>Clinical epigenetics</title><addtitle>Clin Epigenetics</addtitle><description>The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>China</subject><subject>Colitis</subject><subject>Colon</subject><subject>Cytokines - genetics</subject><subject>Dextran</subject><subject>Dextran sulfate</subject><subject>Disease Models, Animal</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>E1A-Associated p300 Protein - genetics</subject><subject>Enhancers</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Gastrointestinal diseases</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Genetics</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - genetics</subject><subject>Intestine</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Pathogenesis</subject><subject>Phosphoproteins - genetics</subject><subject>Proteins</subject><subject>Stat1 protein</subject><subject>STAT1 Transcription Factor - genetics</subject><subject>Sulfates</subject><subject>Tumor necrosis factor-α</subject><issn>1868-7075</issn><issn>1868-7083</issn><issn>1868-7083</issn><issn>1868-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUsFu1DAQjRCIVqU_wAFZ4sIlxRM7jnNBWq1aqLSCSixny3Emu66ceImdrvbMj-OwZaEI--Cx5703ntHLstdArwCkeB-AAZc5LSCnABTy_bPsPCVkXlHJnp_iqjzLLkO4p2mxuq6BvszOGAcoCijPsx9f14s1ENzZDQ4YrdHOHciIm8npiIGslncF0UNL1p9vFrcpbuasGScb7bAh13eMUhI9MX6Io22miPMtbpHsdNz6WTTYQHxH7NA53fc6-vFAGr9HR1obUAd8lb3otAt4-XheZN9urtfLT_nqy8fb5WKVG15XMdfQCV2BRsFYYWopkYm6LWglEWvdGNlIUVS8pYJRI6rGtCi04F1D25ZqDuwi-3DU3U1Nj63B9GXt1G60vR4PymurnmYGu1Ub_6Ak1Bx4mQTePQqM_vuEIareBoPO6QH9FFRRclqC5JQl6Nt_oPd-GofU3oxiJU3jF39QG-1QpQn5VNfMomohBJesqsRc9uo_qLRb7G0aPHY2vT8hFEeCGX0II3anHoGq2T3q6B6V3KN-uUftE-nN39M5UX57hf0EHg6_Sg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yu, Ya-Li</creator><creator>Chen, Meng</creator><creator>Zhu, Hua</creator><creator>Zhuo, Ming-Xing</creator><creator>Chen, Ping</creator><creator>Mao, Yu-Juan</creator><creator>Li, Lian-Yun</creator><creator>Zhao, Qiu</creator><creator>Wu, Min</creator><creator>Ye, Mei</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9393-3680</orcidid></search><sort><creationdate>20211201</creationdate><title>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</title><author>Yu, Ya-Li ; Chen, Meng ; Zhu, Hua ; Zhuo, Ming-Xing ; Chen, Ping ; Mao, Yu-Juan ; Li, Lian-Yun ; Zhao, Qiu ; Wu, Min ; Ye, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>China</topic><topic>Colitis</topic><topic>Colon</topic><topic>Cytokines - genetics</topic><topic>Dextran</topic><topic>Dextran sulfate</topic><topic>Disease Models, Animal</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>E1A-Associated p300 Protein - genetics</topic><topic>Enhancers</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Gastrointestinal diseases</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Genetics</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - genetics</topic><topic>Intestine</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Pathogenesis</topic><topic>Phosphoproteins - genetics</topic><topic>Proteins</topic><topic>Stat1 protein</topic><topic>STAT1 Transcription Factor - genetics</topic><topic>Sulfates</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ya-Li</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Zhuo, Ming-Xing</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Mao, Yu-Juan</creatorcontrib><creatorcontrib>Li, Lian-Yun</creatorcontrib><creatorcontrib>Zhao, Qiu</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Ye, Mei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical epigenetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ya-Li</au><au>Chen, Meng</au><au>Zhu, Hua</au><au>Zhuo, Ming-Xing</au><au>Chen, Ping</au><au>Mao, Yu-Juan</au><au>Li, Lian-Yun</au><au>Zhao, Qiu</au><au>Wu, Min</au><au>Ye, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</atitle><jtitle>Clinical epigenetics</jtitle><addtitle>Clin Epigenetics</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>127</spage><epage>127</epage><pages>127-127</pages><artnum>127</artnum><issn>1868-7075</issn><issn>1868-7083</issn><eissn>1868-7083</eissn><eissn>1868-7075</eissn><abstract>The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.</abstract><cop>Germany</cop><pub>BioMed Central Ltd</pub><pmid>34112215</pmid><doi>10.1186/s13148-021-01101-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9393-3680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-7075
ispartof Clinical epigenetics, 2021-12, Vol.13 (1), p.127-127, Article 127
issn 1868-7075
1868-7083
1868-7083
1868-7075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8194145
source Publicly Available Content Database; PubMed Central
subjects Adaptor Proteins, Signal Transducing - genetics
Animals
China
Colitis
Colon
Cytokines - genetics
Dextran
Dextran sulfate
Disease Models, Animal
DNA methylation
DNA Methylation - genetics
E1A-Associated p300 Protein - genetics
Enhancers
Epigenesis, Genetic - genetics
Epigenetic inheritance
Epigenetics
Gastrointestinal diseases
Gene expression
Genetic transcription
Genetics
Humans
Inflammation
Inflammatory bowel disease
Inflammatory bowel diseases
Inflammatory Bowel Diseases - genetics
Intestine
Lymphocytes
Mice
Pathogenesis
Phosphoproteins - genetics
Proteins
Stat1 protein
STAT1 Transcription Factor - genetics
Sulfates
Tumor necrosis factor-α
title STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAT1%20epigenetically%20regulates%20LCP2%20and%20TNFAIP2%20by%20recruiting%20EP300%20to%20contribute%20to%20the%20pathogenesis%20of%20inflammatory%20bowel%20disease&rft.jtitle=Clinical%20epigenetics&rft.au=Yu,%20Ya-Li&rft.date=2021-12-01&rft.volume=13&rft.issue=1&rft.spage=127&rft.epage=127&rft.pages=127-127&rft.artnum=127&rft.issn=1868-7075&rft.eissn=1868-7083&rft_id=info:doi/10.1186/s13148-021-01101-w&rft_dat=%3Cgale_pubme%3EA664837765%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543502216&rft_id=info:pmid/34112215&rft_galeid=A664837765&rfr_iscdi=true