Loading…
STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease
The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied...
Saved in:
Published in: | Clinical epigenetics 2021-12, Vol.13 (1), p.127-127, Article 127 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413 |
container_end_page | 127 |
container_issue | 1 |
container_start_page | 127 |
container_title | Clinical epigenetics |
container_volume | 13 |
creator | Yu, Ya-Li Chen, Meng Zhu, Hua Zhuo, Ming-Xing Chen, Ping Mao, Yu-Juan Li, Lian-Yun Zhao, Qiu Wu, Min Ye, Mei |
description | The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300.
Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis.
p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation. |
doi_str_mv | 10.1186/s13148-021-01101-w |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8194145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664837765</galeid><sourcerecordid>A664837765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIVqU_wAFZ4sIlxRM7jnNBWq1aqLSCSixny3Emu66ceImdrvbMj-OwZaEI--Cx5703ntHLstdArwCkeB-AAZc5LSCnABTy_bPsPCVkXlHJnp_iqjzLLkO4p2mxuq6BvszOGAcoCijPsx9f14s1ENzZDQ4YrdHOHciIm8npiIGslncF0UNL1p9vFrcpbuasGScb7bAh13eMUhI9MX6Io22miPMtbpHsdNz6WTTYQHxH7NA53fc6-vFAGr9HR1obUAd8lb3otAt4-XheZN9urtfLT_nqy8fb5WKVG15XMdfQCV2BRsFYYWopkYm6LWglEWvdGNlIUVS8pYJRI6rGtCi04F1D25ZqDuwi-3DU3U1Nj63B9GXt1G60vR4PymurnmYGu1Ub_6Ak1Bx4mQTePQqM_vuEIareBoPO6QH9FFRRclqC5JQl6Nt_oPd-GofU3oxiJU3jF39QG-1QpQn5VNfMomohBJesqsRc9uo_qLRb7G0aPHY2vT8hFEeCGX0II3anHoGq2T3q6B6V3KN-uUftE-nN39M5UX57hf0EHg6_Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543502216</pqid></control><display><type>article</type><title>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Ya-Li ; Chen, Meng ; Zhu, Hua ; Zhuo, Ming-Xing ; Chen, Ping ; Mao, Yu-Juan ; Li, Lian-Yun ; Zhao, Qiu ; Wu, Min ; Ye, Mei</creator><creatorcontrib>Yu, Ya-Li ; Chen, Meng ; Zhu, Hua ; Zhuo, Ming-Xing ; Chen, Ping ; Mao, Yu-Juan ; Li, Lian-Yun ; Zhao, Qiu ; Wu, Min ; Ye, Mei</creatorcontrib><description>The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300.
Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis.
p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.</description><identifier>ISSN: 1868-7075</identifier><identifier>ISSN: 1868-7083</identifier><identifier>EISSN: 1868-7083</identifier><identifier>EISSN: 1868-7075</identifier><identifier>DOI: 10.1186/s13148-021-01101-w</identifier><identifier>PMID: 34112215</identifier><language>eng</language><publisher>Germany: BioMed Central Ltd</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Animals ; China ; Colitis ; Colon ; Cytokines - genetics ; Dextran ; Dextran sulfate ; Disease Models, Animal ; DNA methylation ; DNA Methylation - genetics ; E1A-Associated p300 Protein - genetics ; Enhancers ; Epigenesis, Genetic - genetics ; Epigenetic inheritance ; Epigenetics ; Gastrointestinal diseases ; Gene expression ; Genetic transcription ; Genetics ; Humans ; Inflammation ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - genetics ; Intestine ; Lymphocytes ; Mice ; Pathogenesis ; Phosphoproteins - genetics ; Proteins ; Stat1 protein ; STAT1 Transcription Factor - genetics ; Sulfates ; Tumor necrosis factor-α</subject><ispartof>Clinical epigenetics, 2021-12, Vol.13 (1), p.127-127, Article 127</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</citedby><cites>FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</cites><orcidid>0000-0002-9393-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2543502216?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34112215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Ya-Li</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Zhuo, Ming-Xing</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Mao, Yu-Juan</creatorcontrib><creatorcontrib>Li, Lian-Yun</creatorcontrib><creatorcontrib>Zhao, Qiu</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Ye, Mei</creatorcontrib><title>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</title><title>Clinical epigenetics</title><addtitle>Clin Epigenetics</addtitle><description>The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300.
Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis.
p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>China</subject><subject>Colitis</subject><subject>Colon</subject><subject>Cytokines - genetics</subject><subject>Dextran</subject><subject>Dextran sulfate</subject><subject>Disease Models, Animal</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>E1A-Associated p300 Protein - genetics</subject><subject>Enhancers</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Gastrointestinal diseases</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Genetics</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - genetics</subject><subject>Intestine</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Pathogenesis</subject><subject>Phosphoproteins - genetics</subject><subject>Proteins</subject><subject>Stat1 protein</subject><subject>STAT1 Transcription Factor - genetics</subject><subject>Sulfates</subject><subject>Tumor necrosis factor-α</subject><issn>1868-7075</issn><issn>1868-7083</issn><issn>1868-7083</issn><issn>1868-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUsFu1DAQjRCIVqU_wAFZ4sIlxRM7jnNBWq1aqLSCSixny3Emu66ceImdrvbMj-OwZaEI--Cx5703ntHLstdArwCkeB-AAZc5LSCnABTy_bPsPCVkXlHJnp_iqjzLLkO4p2mxuq6BvszOGAcoCijPsx9f14s1ENzZDQ4YrdHOHciIm8npiIGslncF0UNL1p9vFrcpbuasGScb7bAh13eMUhI9MX6Io22miPMtbpHsdNz6WTTYQHxH7NA53fc6-vFAGr9HR1obUAd8lb3otAt4-XheZN9urtfLT_nqy8fb5WKVG15XMdfQCV2BRsFYYWopkYm6LWglEWvdGNlIUVS8pYJRI6rGtCi04F1D25ZqDuwi-3DU3U1Nj63B9GXt1G60vR4PymurnmYGu1Ub_6Ak1Bx4mQTePQqM_vuEIareBoPO6QH9FFRRclqC5JQl6Nt_oPd-GofU3oxiJU3jF39QG-1QpQn5VNfMomohBJesqsRc9uo_qLRb7G0aPHY2vT8hFEeCGX0II3anHoGq2T3q6B6V3KN-uUftE-nN39M5UX57hf0EHg6_Sg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yu, Ya-Li</creator><creator>Chen, Meng</creator><creator>Zhu, Hua</creator><creator>Zhuo, Ming-Xing</creator><creator>Chen, Ping</creator><creator>Mao, Yu-Juan</creator><creator>Li, Lian-Yun</creator><creator>Zhao, Qiu</creator><creator>Wu, Min</creator><creator>Ye, Mei</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9393-3680</orcidid></search><sort><creationdate>20211201</creationdate><title>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</title><author>Yu, Ya-Li ; Chen, Meng ; Zhu, Hua ; Zhuo, Ming-Xing ; Chen, Ping ; Mao, Yu-Juan ; Li, Lian-Yun ; Zhao, Qiu ; Wu, Min ; Ye, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>China</topic><topic>Colitis</topic><topic>Colon</topic><topic>Cytokines - genetics</topic><topic>Dextran</topic><topic>Dextran sulfate</topic><topic>Disease Models, Animal</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>E1A-Associated p300 Protein - genetics</topic><topic>Enhancers</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Gastrointestinal diseases</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Genetics</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - genetics</topic><topic>Intestine</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Pathogenesis</topic><topic>Phosphoproteins - genetics</topic><topic>Proteins</topic><topic>Stat1 protein</topic><topic>STAT1 Transcription Factor - genetics</topic><topic>Sulfates</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ya-Li</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Zhuo, Ming-Xing</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Mao, Yu-Juan</creatorcontrib><creatorcontrib>Li, Lian-Yun</creatorcontrib><creatorcontrib>Zhao, Qiu</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Ye, Mei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical epigenetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ya-Li</au><au>Chen, Meng</au><au>Zhu, Hua</au><au>Zhuo, Ming-Xing</au><au>Chen, Ping</au><au>Mao, Yu-Juan</au><au>Li, Lian-Yun</au><au>Zhao, Qiu</au><au>Wu, Min</au><au>Ye, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease</atitle><jtitle>Clinical epigenetics</jtitle><addtitle>Clin Epigenetics</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>127</spage><epage>127</epage><pages>127-127</pages><artnum>127</artnum><issn>1868-7075</issn><issn>1868-7083</issn><eissn>1868-7083</eissn><eissn>1868-7075</eissn><abstract>The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300.
Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis.
p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.</abstract><cop>Germany</cop><pub>BioMed Central Ltd</pub><pmid>34112215</pmid><doi>10.1186/s13148-021-01101-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9393-3680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-7075 |
ispartof | Clinical epigenetics, 2021-12, Vol.13 (1), p.127-127, Article 127 |
issn | 1868-7075 1868-7083 1868-7083 1868-7075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8194145 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adaptor Proteins, Signal Transducing - genetics Animals China Colitis Colon Cytokines - genetics Dextran Dextran sulfate Disease Models, Animal DNA methylation DNA Methylation - genetics E1A-Associated p300 Protein - genetics Enhancers Epigenesis, Genetic - genetics Epigenetic inheritance Epigenetics Gastrointestinal diseases Gene expression Genetic transcription Genetics Humans Inflammation Inflammatory bowel disease Inflammatory bowel diseases Inflammatory Bowel Diseases - genetics Intestine Lymphocytes Mice Pathogenesis Phosphoproteins - genetics Proteins Stat1 protein STAT1 Transcription Factor - genetics Sulfates Tumor necrosis factor-α |
title | STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAT1%20epigenetically%20regulates%20LCP2%20and%20TNFAIP2%20by%20recruiting%20EP300%20to%20contribute%20to%20the%20pathogenesis%20of%20inflammatory%20bowel%20disease&rft.jtitle=Clinical%20epigenetics&rft.au=Yu,%20Ya-Li&rft.date=2021-12-01&rft.volume=13&rft.issue=1&rft.spage=127&rft.epage=127&rft.pages=127-127&rft.artnum=127&rft.issn=1868-7075&rft.eissn=1868-7083&rft_id=info:doi/10.1186/s13148-021-01101-w&rft_dat=%3Cgale_pubme%3EA664837765%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-a1f6a71ae6332c988e369d2078ee9abc8b86274d0630c67bcde6a64fb0dd0a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543502216&rft_id=info:pmid/34112215&rft_galeid=A664837765&rfr_iscdi=true |