Loading…

COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model

In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adapt...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2021-11, Vol.22 (6)
Main Authors: Gogate, Nikhita, Lyman, Daniel, Bell, Amanda, Cauley, Edmund, Crandall, Keith A, Joseph, Ashia, Kahsay, Robel, Natale, Darren A, Schriml, Lynn M, Sen, Sabyasach, Mazumder, Raja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, comorbidities, genetics and other factors-compounding the complexity of COVID-19 pathobiology and potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP, NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19) that will help researchers and diagnosticians alike.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbab191