Loading…

Elevating the Levels of Calcium Ions Exacerbate Alzheimer’s Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau

Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the ta...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-05, Vol.22 (11), p.5900
Main Authors: Guan, Pei-Pei, Cao, Long-Long, Wang, Pu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
ISSN:1422-0067
1422-0067
DOI:10.3390/ijms22115900